
CHAPTER 2

Vectors and Matrices

KEY TERMS

vectors

matrices

row vector

column vector

scalar

elements

array

array operations

colon operator

iterate

step value

concatenating

index

subscript

index vector

transpose

subscripted indexing

unwinding a matrix

linear indexing

column major order

columnwise

vector of variables

empty vector

deleting elements

three-dimensional matrices

cumulative sum

cumulative product

running sum

nesting calls

scalar multiplication

array operations

array multiplication

array division

matrix multiplication

inner dimensions

outer dimensions

dot product or inner

product

cross product or outer

product

logical vector

logical indexing

zero crossings

MATLAB� is short for matrix laboratory. Everything in MATLAB is written to
work with vectors and matrices. This chapter will introduce vectors and
matrices. Operations on vectors and matrices, and built-in functions that can
be used to simplify code will also be explained. The matrix operations and
functions described in this chapter will form the basis for vectorized coding,
which will be explained in Chapter 5.

2.1 VECTORS AND MATRICES
Vectors and matrices are used to store sets of values, all of which are the same
type. A matrix can be visualized as a table of values. The dimensions of
a matrix are r x c, where r is the number of rows and c is the number of

MATLAB�. http://dx.doi.org/10.1016/B978-0-12-405876-7.00002-X

Copyright � 2013 Elsevier Inc. All rights reserved.

33

CONTENTS

2.1 Vectors and
Matrices.......33

2.2 Vectors and
Matrices as
Function
Arguments ..50

2.3 Scalar and
Array
Operations
on Vectors and
Matrices.......54

2.4 Matrix
Multiplication
......................57

2.5 Logical
Vectors.........59

2.6 Applications:
The diff and
meshgrid
Functions.....64

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://dx.doi.org/10.1016/B978-0-12-405876-7.00002-X
http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

columns. This is pronounced “r by c”. A vector can be either a row vector or
a column vector. If a vector has n elements, a row vector would have the
dimensions 1 x n and a column vector would have the dimensions n x 1. A
scalar (one value) has the dimensions 1 x 1. Therefore, vectors and scalars are
actually just special cases of matrices.

Here are some diagrams showing, from left to right, a scalar, a column vector,
a row vector, and a matrix:

5 88 3 11
5

9 6 3
5 7 2

3
7

4

The scalar is 1 x 1, the column vector is 3 x 1 (three rows by one column), the
row vector is 1 x 4 (one row by four columns), and the matrix is 2 x 3 (two
rows by three columns). All of the values stored in these matrices are stored in
what are called elements.

MATLAB is written to work with matrices; the name MATLAB is short for
matrix laboratory. As MATLAB is written to work with matrices, it is very easy
to create vector and matrix variables, and there are many operations and
functions that can be used on vectors and matrices.

A vector in MATLAB is equivalent to what is called a one-dimensional array in
other languages. A matrix is equivalent to a two-dimensional array. Usually,
even in MATLAB, some operations that can be performed on either vectors or
matrices are referred to as array operations. The term array is also frequently
used to mean generically either a vector or a matrix.

In mathematics, the general form of an m x n matrix A is written as:

A ¼

2
664
a11 a12 / a1n
a21 a22 / a2n
« « « «

am1 am2 / amn

3
775 ¼ aij i ¼ 1;.;m; j ¼ 1;.;n

2.1.1 Creating Row Vectors
There are several ways to create row vector variables. The most direct way is to
put the values that you want in the vector in square brackets, separated by
either spaces or commas. For example, both of these assignment statements
create the same vector v:

>> v = [1 2 3 4]
v =

1 2 3 4

>> v = [1,2,3,4]
v =

1 2 3 4

34 CHAPTER 2: Vectors and Matrices

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Both of these create a row vector variable that has four elements; each value is
stored in a separate element in the vector.

2.1.1.1 The Colon Operator and Linspace Function
If, as in the preceding examples, the values in the vector are regularly spaced,
the colon operator can be used to iterate through these values. For example, 1:5
results in all of the integers from 1 to 5 inclusive:

>> vec = 1:5
vec =

1 2 3 4 5

Note that, in this case, the brackets [] are not necessary to define the
vector.

With the colon operator, a step value can also be specified by using another
colon, in the form (first:step:last). For example, to create a vector with all
integers from 1 to 9 in steps of 2:

>> nv = 1:2:9
nv =

1 3 5 7 9

QUICK QUESTION!

What happens if adding the step value would go beyond the
range specified by the last, for example

1:2:6

Answer
This would create a vector containing 1, 3, and 5. Adding 2 to
the 5 would go beyond 6, so the vector stops at 5; the result
would be

1 3 5

QUICK QUESTION!

How can you use the colon operator to generate the vector
shown below?

9 7 5 3 1

Answer
9:-2:1

The step value can be a negative number, so the resulting
sequence is in descending order (from highest to lowest).

The linspace function creates a linearly spaced vector; linspace(x,y,n)
creates a vector with n values in the inclusive range from x to y. If n is
omitted, the default is 100 points. For example, the following creates

352.1 Vectors and Matrices

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

a vector with five values linearly spaced between 3 and 15, including the 3
and 15:

>> ls = linspace(3,15,5)
ls =

3 6 9 12 15

Similarly, the logspace function creates a logarithmically spaced vector; log-
space(x,y,n) creates a vector with n values in the inclusive range from 10^x to
10^y. If n is omitted, the default is 50 points. For example:

>> logspace(1,5,5)
ans =

10 100 1000 10000 100000

Vector variables can also be created using existing variables. For example,
a new vector is created here consisting, first of all, of the values from nv fol-
lowed by all values from ls:

>> newvec = [nv ls]
newvec =

1 3 5 7 9 3 6 9 12 15

Putting two vectors together like this to create a new one is called concate-
nating the vectors.

2.1.1.2 Referring to and Modifying Elements
The elements in a vector are numbered sequentially; each element number is
called the index, or subscript. In MATLAB, the indices start at 1. Normally,
diagrams of vectors and matrices show the indices. For example, for the
variable newvec created earlier the indices 1e10 of the elements are shown
above the vector:

newvec
1 2 3 4 5 6 7 8 9 10
1 3 5 7 9 3 6 9 12 15

A particular element in a vector is accessed using the name of the vector
variable and the index or subscript in parentheses. For example, the fifth
element in the vector newvec is a 9.

>> newvec(5)
ans =

9

The expression newvec(5) would be pronounced “newvec sub 5”, where sub is
short for subscript. A subset of a vector, which would be a vector itself, can also

36 CHAPTER 2: Vectors and Matrices

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

be obtained using the colon operator. For example, the following statement
would get the fourth through sixth elements of the vector newvec, and store the
result in a vector variable b:

>> b = newvec(4:6)
b =

7 9 3

Any vector can be used for the indices into another vector, not just one created
using the colon operator. The indices do not need to be sequential. For
example, the following would get the first, tenth, and fifth elements of the
vector newvec:

>> newvec([1 10 5])
ans =

1 15 9

The vector [1 10 5] is called an index vector; it specifies the indices in the
original vector that are being referenced.

The value stored in a vector element can be changed by specifying the index or
subscript. For example, to change the second element from the preceding
vector b to now store the value 11 instead of 9:

>> b(2) = 11
b =

7 11 3

By referring to an index that does not yet exist, a vector can also be extended.
For example, the following creates a vector that has three elements. By then
assigning a value to the fourth element, the vector is extended to have four
elements.

>> rv = [3 55 11]
rv =

3 55 11
>> rv(4) = 2
rv =

3 55 11 2

If there is a gap between the end of the vector and the specified element, 0s are
filled in. For example, the following extends the variable rv again:

>> rv(6) = 13
rv =

3 55 11 2 0 13

As we will see later, this is actually not very efficient because it can take
extra time.

372.1 Vectors and Matrices

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

PRACTICE 2.1
Think about what would be produced by the following sequence of statements and expressions,
and then type them in to verify your answers:

pvec = 3:2:10

pvec(2) = 15

pvec(7) = 33

pvec([2:4 7])

linspace(5,11,3)

logspace(2,4,3)

2.1.2 Creating Column Vectors
One way to create a column vector is to explicitly put the values in square
brackets, separated by semicolons (rather than commas or spaces):

>> c = [1; 2; 3; 4]
c =

1
2
3
4

There is no direct way to use the colon operator to get a column vector.
However, any row vector created using any method can be transposed to result
in a column vector. In general, the transpose of a matrix is a new matrix in
which the rows and columns are interchanged. For vectors, transposing a row
vector results in a column vector, and transposing a column vector results in
a row vector. In MATLAB, the apostrophe is built in as the transpose operator.

>> r = 1:3;
>> c = r'
c =

1
2
3

2.1.3 Creating Matrix Variables
Creating a matrix variable is simply a generalization of creating row and
column vector variables. That is, the values within a row are separated by
either spaces or commas, and the different rows are separated by semi-
colons. For example, the matrix variable mat is created by explicitly entering
values:

38 CHAPTER 2: Vectors and Matrices

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

>> mat = [4 3 1; 2 5 6]
mat =

4 3 1
2 5 6

There must always be the same number of values in each row. If you attempt to
create a matrix in which there are different numbers of values in the rows, the
result will be an error message, such as in the following:

>> mat = [3 5 7; 1 2]
Error using vertcat
Dimensions of matrices being concatenated are not consistent.

Iterators can be used for the values in the rows using the colon operator. For
example:

>> mat = [2:4; 3:5]
mat =

2 3 4
3 4 5

The separate rows in a matrix can also be specified by hitting the Enter key
after each row instead of typing a semicolon when entering the matrix values,
as in:

>> newmat = [2 6 88
33 5 2]

newmat =
2 6 88

33 5 2

Matrices of random numbers can be created using the rand function. If a single
value n is passed to rand, an n x n matrix will be created, or passing two
arguments will specify the number of rows and columns:

>> rand(2)
ans =

0.2311 0.4860
0.6068 0.8913

>> rand(1,3)
ans =

0.7621 0.4565 0.0185

Matrices of random integers can be generated using randi; after the range is
passed, the dimensions of the matrix are passed (again, using one value n for
an n x n matrix, or two values for the dimensions):

392.1 Vectors and Matrices

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

>> randi([5, 10], 2)
ans =

8 10
9 5

>> randi([10, 30], 2, 3)
ans =

21 10 13
19 17 26

Note that the range can be specified for randi, but not for rand (the format for
calling these functions is different).

MATLAB also has several functions that create special matrices. For example,
the zeros function creates a matrix of all zeros and the ones function creates
a matrix of all ones. Like rand, either one argument can be passed (which will
be both the number of rows and columns) or two arguments (first the number
of rows and then the number of columns).

>> zeros(3)
ans =

0 0 0
0 0 0
0 0 0

>> ones(2,4)
ans =

1 1 1 1
1 1 1 1

Note that there is no twos function, or tens, or fifty-threes e just zeros and
ones!

2.1.3.1 Referring to and Modifying Matrix Elements
To refer to matrix elements, the row and then the column subscripts are given
in parentheses (always the row first and then the column). For example, this
creates a matrix variable mat and then refers to the value in the second row,
third column of mat:

>> mat = [2:4; 3:5]
mat =

2 3 4
3 4 5

>> mat(2,3)
ans =

5

40 CHAPTER 2: Vectors and Matrices

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

This is called subscripted indexing; it uses the row and column subscripts. It is
also possible to refer to a subset of a matrix. For example, this refers to the first
and second rows, second and third columns:

>> mat(1:2,2:3)
ans =

3 4
4 5

Using just one colon by itself for the row subscript means all rows, regardless
of how many, and using a colon for the column subscript means all columns.
For example, this refers to all columns within the first row or, in other words,
the entire first row:

>> mat(1,:)
ans =

2 3 4

This refers to the entire second column:

>> mat(:, 2)
ans =

3
4

If a single index is used with a matrix, MATLAB unwinds the matrix column by
column. For example, for the matrix intmat created here, the first two elements
are from the first column and the last two are from the second column:

>> intmat = [100 77; 28 14]
intmat =

100 77
28 14

>> intmat(1)
ans =

100
>> intmat(2)
ans =

28
>> intmat(3)
ans =

77
>> intmat(4)
ans =

14

This is called linear indexing. It is usually much better style when working with
matrices to use subscripted indexing.

MATLAB stores matrices in memory in column major order, or columnwise,
which is why linear indexing refers to the elements in order by columns.

412.1 Vectors and Matrices

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

An individual element in a matrix can be modified by assigning a new value
to it.

>> mat = [2:4; 3:5];
>> mat(1,2) = 11
mat =

2 11 4
3 4 5

An entire row or column could also be changed. For example, the following
replaces the entire second row with values from a vector obtained using the
colon operator.

>> mat(2,:) = 5:7
mat =

2 11 4
5 6 7

Notice that as the entire row is being modified, a row vector with the correct
length must be assigned. Any subset of a matrix can be modified as long as
what is being assigned has the same number of rows and columns as the
subset being modified.

To extend a matrix an individual element could not be added as that would
mean there would no longer be the same number of values in every row.
However, an entire row or column could be added. For example, the following
would add a fourth column to the matrix:

>> mat(:,4) = [9 2]'
mat =

2 11 4 9
5 6 7 2

Just as we saw with vectors, if there is a gap between the current matrix and the
row or column being added, MATLAB will fill in with zeros.

>> mat(4,:) = 2:2:8
mat =

2 11 4 9
5 6 7 2
0 0 0 0
2 4 6 8

2.1.4 Dimensions
The length and size functions in MATLAB are used to find dimensions of
vectors and matrices. The length function returns the number of elements in
a vector. The size function returns the number of rows and columns in a vector
or matrix. For example, the following vector vec has four elements so its length
is 4. It is a row vector, so the size is 1 x 4.

42 CHAPTER 2: Vectors and Matrices

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

>> vec = -2:1
vec =

-2 -1 0 1
>> length(vec)
ans =

4
>> size(vec)
ans =

1 4

To create the following matrix variable mat, iterators are used on the two rows
and then the matrix is transposed so that it has three rows and two columns
or, in other words, the size is 3 x 2.

>> mat = [1:3; 5:7]'
mat =

1 5
2 6
3 7

The size function returns the number of rows and then the number of
columns, so to capture these values in separate variables we put a vector of
two variables on the left of the assignment. The variable r stores the first
value returned, which is the number of rows, and c stores the number of
columns.

>> [r, c] = size(mat)
r =

3
c =

2

Note that this example demonstrates very important and unique concepts in
MATLAB: the ability to have a function return multiple values and the ability
to have a vector of variables on the left side of an assignment in which to store
the values.

If called as just an expression, the size function will return both values in
a vector:

>> size(mat)
ans =

3 2

For a matrix, the length function will return either the number of rows or the
number of columns, whichever is largest (in this case the number of rows, 3).

>> length(mat)
ans =

3

432.1 Vectors and Matrices

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

QUICK QUESTION!

How could you create a matrix of zeros with the same size as
another matrix?

Answer
For a matrix variable mat, the following expression would
accomplish this:

zeros(size(mat))

The size function returns the size of the matrix, which is then
passed to the zeros function, which then returns a matrix of
zeros with the same size as mat. It is not necessary in this
case to store the values returned from the size function in
variables.

MATLAB also has a function numel, which returns the total number of
elements in any array (vector or matrix):

>> vec = 9:-2:1
vec =

9 7 5 3 1
>> numel(vec)
ans =

5

>> mat = [3:2:7; 9 33 11]
mat =

3 5 7
9 33 11

>> numel(mat)
ans =

6

For vectors, this is equivalent to the length of the vector. For matrices, it is the
product of the number of rows and columns.

It is important tonote that in programming applications, it is better to not assume
that the dimensions of a vector or matrix are known. Instead, to be general,
use either the length ornumel function to determine the number of elements in a
vector, and use size (and store the result in two variables) for a matrix.

MATLAB also has a built-in expression, end, that can be used to refer to the last
element in a vector; for example, v(end) is equivalent to v(length(v)). For
matrices, it can refer to the last row or column. So, for example, using end for
the row index would refer to the last row.

In this case, the element referred to is in the first column of the last row:

>> mat = [1:3; 4:6]'
mat =

1 4
2 5
3 6

>> mat(end,1)
ans =

3

44 CHAPTER 2: Vectors and Matrices

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Using end for the column index would refer to a value in the last column (e.g.,
the last column of the second row):

>> mat(2,end)
ans =

5

This can only be used as an index.

2.1.4.1 Changing Dimensions
In addition to the transpose operator, MATLAB has several built-in functions
that change the dimensions or configuration of matrices, including reshape,
fliplr, flipud, and rot90.

The reshape function changes the dimensions of a matrix. The following
matrix variable mat is 3 x 4 or, in other words, it has 12 elements (each in the
range from 1 to 100).

>> mat = randi(100, 3, 4)
14 61 2 94
21 28 75 47
20 20 45 42

These 12 values could instead be arranged as a 2 x 6 matrix, 6 x 2, 4 x 3, 1 x 12,
or 12 x 1. The reshape function iterates through the matrix columnwise. For
example, when reshaping mat into a 2 x 6 matrix, the values from the first
column in the original matrix (14, 21, and 20) are used first, then the values
from the second column (61, 28, 20), and so forth.

>> reshape(mat,2,6)
ans =

14 20 28 2 45 47
21 61 20 75 94 42

Note that in these examples mat is unchanged; instead, the results are stored in
the default variable ans each time.

The fliplr function “flips” the matrix from left to right (in other words, the left-
most column, the first column, becomes the last column and so forth), and
the flipud function flips up to down.

>> mat
mat =

14 61 2 94
21 28 75 47
20 20 45 42

>> fliplr(mat)
ans =

94 2 61 14
47 75 28 21
42 45 20 20

452.1 Vectors and Matrices

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

>> mat
mat =

14 61 2 94
21 28 75 47
20 20 45 42

>> flipud(mat)
ans =

20 20 45 42
21 28 75 47
14 61 2 94

The rot90 function rotates the matrix counterclockwise 90 degrees, so, for
example, the value in the top right corner becomes instead the top left corner
and the last column becomes the first row.

>> mat
mat =

14 61 2 94
21 28 75 47
20 20 45 42

>> rot90(mat)
ans =

94 47 42
2 75 45

61 28 20
14 21 20

QUICK QUESTION!

Is there a rot180 function? Is there a rot90 function (to rotate
clockwise)?

Answer
Not exactly, but a second argument can be passed to the
rot90 function which is an integer n; the function will rotate
90*n degrees. The integer can be positive or negative. For
example, if 2 is passed, the function will rotate the matrix
180 degrees (so, it would be the same as rotating the result
of rot90 another 90 degrees).

>> mat
mat =

14 61 2 94
21 28 75 47
20 20 45 42

>> rot90(mat,2)
ans =

42 45 20 20
47 75 28 21
94 2 61 14

If a negative number is passed for n, the rotation would be in
the opposite direction, that is, clockwise.

>> mat
mat =

14 61 2 94
21 28 75 47
20 20 45 42

>> rot90(mat,-1)
ans =

20 21 14
20 28 61
45 75 2
42 47 94

46 CHAPTER 2: Vectors and Matrices

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

The function repmat can be used to create a matrix; repmat(mat,m,n) creates
a larger matrix that consists of an m x n matrix of copies of mat. For example,
here is a 2 x 2 random matrix:

>> intmat = randi(100,2)
intmat =

50 34
96 59

Replicating this matrix six times as a 3 x 2 matrix would produce copies of
intmat in this form:

intmat intmat

intmat intmat

intmat intmat

>> repmat(intmat,3,2)
ans =

50 34 50 34
96 59 96 59
50 34 50 34
96 59 96 59
50 34 50 34
96 59 96 59

2.1.5 Empty Vectors
An empty vector (a vector that stores no values) can be created using empty
square brackets:

>> evec = []
evec =

[]
>> length(evec)
ans =

0

Values can then be added to an empty vector by concatenating, or adding,
values to the existing vector. The following statement takes what is currently in
evec, which is nothing, and adds a 4 to it.

>> evec = [evec 4]
evec =

4

Note

There is a difference

between having an

empty vector variable

and not having the

variable at all.

472.1 Vectors and Matrices

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

The following statement takes what is currently in evec, which is 4, and adds an
11 to it.

>> evec = [evec 11]
evec =

4 11

This can be continued as many times as desired to build a vector up from
nothing. Sometimes this is necessary, although, generally, it is not a good idea
if it can be avoided because it can be quite time consuming.

Empty vectors can also be used to delete elements from vectors. For
example, to remove the third element from a vector, the empty vector is
assigned to it:

>> vec = 4:8
vec =

4 5 6 7 8
>> vec(3) = []
vec =

4 5 7 8

The elements in this vector are now numbered 1 through 4.

Subsets of a vector could also be removed. For example:
>> vec = 3:10
vec =

3 4 5 6 7 8 9 10
>> vec(2:4) = []
vec =

3 7 8 9 10

Individual elements cannot be removed from matrices, as matrices always
have to have the same number of elements in every row.

>> mat = [7 9 8; 4 6 5]
mat =

7 9 8
4 6 5

>> mat(1,2) = [];
Subscripted assignment dimension mismatch.

However, entire rows or columns could be removed from a matrix. For
example, to remove the second column:

>> mat(:,2) = []
mat =

7 8
4 5

48 CHAPTER 2: Vectors and Matrices

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Also, if linear indexing is used with a matrix to delete an element, the matrix
will be reshaped into a row vector.

>> mat = [7 9 8; 4 6 5]
mat =

7 9 8
4 6 5

>> mat(3) = []
mat =

7 4 6 8 5

PRACTICE 2.2
Think about what would be produced by the following sequence of statements and expressions,
and then type them in to verify your answers.

mat = [1:3; 44 9 2; 5:-1:3]

mat(3,2)

mat(2,:)

size(mat)

mat(:,4) = [8;11;33]

numel(mat)

v = mat(3,:)

v(v(2))

v(1) = []

reshape(mat,2,6)

2.1.6 Three-Dimensional Matrices
The matrices that have been shown so far have been two-dimensional; these
matrices have rows and columns. Matrices in MATLAB are not limited to two
dimensions, however. In fact, in Chapter 13 we will see image applications in
which three-dimensional matrices are used. For a three-dimensional matrix,
imagine a two-dimensional matrix as being flat on a page, and then the third
dimension consists of more pages on top of that one (so they are stacked on
top of each other).

Here is an example of creating a three-dimensional matrix. First, two two-
dimensional matrices layerone and layertwo are created; it is important that
they have the same dimensions (in this case, 3 x 5). Then, these are made into
“layers” in a three-dimensional matrix mat. Note that we end up with a matrix
that has two layers, each of which is 3 x 5. The resulting three-dimensional
matrix has dimensions 3 x 5 x 2.

492.1 Vectors and Matrices

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

>> layerone = reshape(1:15,3,5)
layerone =

1 4 7 10 13
2 5 8 11 14
3 6 9 12 15

>> layertwo = fliplr(flipud(layerone))
layertwo =

15 12 9 6 3
14 11 8 5 2
13 10 7 4 1

>> mat(:,:,1) = layerone
mat =

1 4 7 10 13
2 5 8 11 14
3 6 9 12 15

>> mat(:,:,2) = layertwo
mat(:,:,1) =

1 4 7 10 13
2 5 8 11 14
3 6 9 12 15

mat(:,:,2) =
15 12 9 6 3
14 11 8 5 2
13 10 7 4 1

>> size(mat)
ans =

3 5 2

Three-dimensional matrices can also be created using the zeros, ones, and
rand functions by specifying three dimensions to begin with. For example,
zeros(2,4,3) will create a 2 x 4 x 3 matrix of all 0s.

Unless specified otherwise, in the remainder of this book “matrices” will be
assumed to be two-dimensional.

2.2 VECTORS AND MATRICES AS FUNCTION
ARGUMENTS
In MATLAB an entire vector or matrix can be passed as an argument to
a function; the function will be evaluated on every element. This means that
the result will be the same size as the input argument.

For example, let us find the sine in radians of every element of a vector vec.
The sin function will automatically return the sine of each individual
element and the result will be a vector with the same length as the input
vector.

50 CHAPTER 2: Vectors and Matrices

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

>> vec = -2:1
vec =

-2 -1 0 1
>> sinvec = sin(vec)
sinvec =

-0.9093 -0.8415 0 0.8415

For a matrix, the resulting matrix will have the same size as the input argument
matrix. For example, the sign function will find the sign of each element in
a matrix:

>> mat = [0 4 -3; -1 0 2]
mat =

0 4 -3
-1 0 2

>> sign(mat)
ans =

0 1 -1
-1 0 1

Functions such as sin and sign can have either scalars or arrays (vectors
or matrices) passed to them. There are a number of functions that are
written specifically to operate on vectors or on columns of matrices;
these include the functions min, max, sum, prod, cumsum, and cumprod.
These functions will be demonstrated first with vectors and then with
matrices.

For example, assume that we have the following vector variables:

>> vec1 = 1:5;
>> vec2 = [3 5 8 2];

The function min will return the minimum value from a vector, and the
function max will return the maximum value.

>> min(vec1)
ans =

1
>> max(vec2)
ans =

8

The function sum will sum all of the elements in a vector. For example, for
vec1 it will return 1þ2þ3þ4þ5 or 15:

>> sum(vec1)
ans =

15

512.2 Vectors and Matrices as Function Arguments

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

The function prod will return the product of all of the elements in a vector; for
example, for vec2 it will return 3*5*8*2 or 240:

>> prod(vec2)
ans =

240

The functions cumsum and cumprod return the cumulative sum or
cumulative product, respectively. A cumulative, or running sum, stores the sum
so far at each step as it adds the elements from the vector. For example,
for vec1, it would store the first element, 1, then 3 (1þ2), then 6 (1þ2þ3),
then 10 (1þ2þ3þ4), then, finally, 15 (1þ2þ3þ4þ5). The result is a vector-
that has as many elements as the input argument vector that is passed to it:

>> cumsum(vec1)
ans =

1 3 6 10 15
>> cumsum(vec2)
ans =

3 8 16 18

The cumprod function stores the cumulative products as it multiplies the
elements in the vector together; again, the resulting vector will have the same
length as the input vector:

>> cumprod(vec1)
ans =

1 2 6 24 120

Formatrices, all of these functions operate on every individual column. If amatrix
has dimensions r x c, the result for themin,max, sum, and prod functions will be
a 1 x c row vector, as they return the minimum, maximum, sum, or product,
respectively, for every column. For example, assume the following matrix:

>> mat = randi([1 20], 3, 5)
mat =

3 16 1 14 8
9 20 17 16 14

19 14 19 15 4

The following are the results for the max and sum functions:

>> max(mat)
ans =

19 20 19 16 14
>> sum(mat)
ans =

31 50 37 45 26

52 CHAPTER 2: Vectors and Matrices

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

To find a function for every row, instead of every column, one method would
be to transpose the matrix.

>> max(mat')
ans =

16 20 19
>> sum(mat')
ans =

42 76 71

As columns are the default, they are considered to be the first dimension.
Specifying the second dimension as an argument to one of these functions will
result in the function operating rowwise. The syntax is slightly different; for the
sum and prod functions, this is the second argument, whereas for themin and
max functions it must be the third argument and the second argument must
be an empty vector:

>> max(mat,[],2)
ans =

16
20
19

>> sum(mat,2)
ans =

42
76
71

Note the difference in the format of the output with these two methods
(transposing results in row vectors whereas specifying the second dimension
results in column vectors).

QUICK QUESTION!

As these functions operate columnwise, how can we get an
overall result for the matrix? For example, how would we
determine the overall maximum in the matrix?

Answer
We would have to get the maximum from the row vector of
column maxima, in other words nest the calls to the max
function:

>> max(max(mat))
ans =

20

532.2 Vectors and Matrices as Function Arguments

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

For the cumsum and cumprod functions, again they return the cumulative
sum or product of every column. The resulting matrix will have the same
dimensions as the input matrix:

>> mat
mat =

3 16 1 14 8
9 20 17 16 14

19 14 19 15 4
>> cumsum(mat)
ans =

3 16 1 14 8
12 36 18 30 22
31 50 37 45 26

2.3 SCALAR AND ARRAY OPERATIONS
ON VECTORS AND MATRICES
Numerical operations can be done on entire vectors or matrices. For example,
let’s say that we want to multiply every element of a vector v by 3.

In MATLAB, we can simply multiply v by 3 and store the result back in v in an
assignment statement:

>> v = [3 7 2 1];
>> v = v*3
v =

9 21 6 3

As another example, we can divide every element by 2:

>> v = [3 7 2 1];
>> v/2
ans =

1.5000 3.5000 1.0000 0.5000

To multiply every element in a matrix by 2:

>> mat = [4:6; 3:-1:1]
mat =

4 5 6
3 2 1

>> mat * 2
ans =

8 10 12
6 4 2

This operation is referred to as scalar multiplication. We are multiplying every
element in a vector or matrix by a scalar (or dividing every element in a vector
or a matrix by a scalar).

54 CHAPTER 2: Vectors and Matrices

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

QUICK QUESTION!

There is no tens function to create a matrix of all tens, so how
could we accomplish that?

Answer
We can either use the ones function and multiply by ten, or
the zeros function and add ten:

>> ones(1,5) * 10
ans =

10 10 10 10 10
>> zeros(2) þ 10
ans =

10 10
10 10

Array operations are operations that are performed on vectors or matrices term
by term or element by element. This means that the two arrays (vectors or
matrices) must be the same size to begin with. The following examples
demonstrate the array addition and subtraction operators.

>> v1 = 2:5
v1 =

2 3 4 5
>> v2 = [33 11 5 1]
v2 =

33 11 5 1
>> v1 þ v2
ans =

35 14 9 6

>> mata = [5:8; 9:-2:3]
mata =

5 6 7 8
9 7 5 3

>> matb = reshape(1:8,2,4)
matb =

1 3 5 7
2 4 6 8

>> mata - matb
ans =

4 3 2 1
7 3 -1 -5

However, for any operation that is based on multiplication (which means
multiplication, division, and exponentiation), a dot must be placed in front of
the operator for array operations. For example, for the exponentiation oper-
ator .^ must be used when working with vectors and matrices, rather than just
the ^ operator. Squaring a vector, for example, means multiplying each
element by itself so the .^ operator must be used.

552.3 Scalar and Array Operations on Vectors and Matrices

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

>> v = [3 7 2 1];
>> v ^ 2
Error using ^
Inputs must be a scalar and a square matrix.
To compute elementwise POWER, use POWER (.^) instead.

>> v .^ 2
ans =

9 49 4 1

Similarly, the operator .* must be used for array multiplication and ./ or .\ for
array division. The following examples demonstrate array multiplication and
array division.

>> v1 = 2:5
v1 =

2 3 4 5
>> v2 = [33 11 5 1]
v2 =

33 11 5 1

>> v1 .* v2
ans =

66 33 20 5

>> mata = [5:8; 9:-2:3]
mata =

5 6 7 8
9 7 5 3

>> matb = reshape(1:8, 2,4)
matb =

1 3 5 7
2 4 6 8

>> mata ./ matb
ans =

5.0000 2.0000 1.4000 1.1429
4.5000 1.7500 0.8333 0.3750

The operators .^, .*, ./, and .\ are called array operators and are used when
multiplying or dividing vectors or matrices of the same size term by term. Note
that matrix multiplication is a very different operation, and will be covered in
the next section.

PRACTICE 2.3
Create a vector variable and subtract 3 from every element in it.
Create a matrix variable and divide every element by 3.
Create a matrix variable and square every element.

56 CHAPTER 2: Vectors and Matrices

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2.4 MATRIX MULTIPLICATION
Matrix multiplication does not mean multiplying term by term; it is not an
array operation. Matrix multiplication has a very specific meaning. First of all,
to multiply a matrix A by a matrix B to result in a matrix C, the number of
columns of A must be the same as the number of rows of B. If the matrix A has
dimensions m x n, that means that matrix B must have dimensions n x
something; we’ll call it p.

We say that the inner dimensions (the ns) must be the same. The resulting
matrix C has the same number of rows as A and the same number of columns
as B (i.e., the outer dimensions m x p). In mathematical notation,

½A�m x n ½B�n x p ¼ ½C�m x p

This only defines the size of C, not how to find the elements of C.

The elements of the matrix C are defined as the sum of products of corre-
sponding elements in the rows of A and columns of B, or, in other words

cij
Xn
k¼1

aikbkj:

In the following example, A is 2 x 3 and B is 3 x 4; the inner dimensions are
both 3, so performing the matrix multiplication A*B is possible (note that B*A
would not be possible). C will have as its size the outer dimensions 2 x 4. The
elements in C are obtained using the summation just described. The first row
of C is obtained using the first row of A and in succession the columns of B.
For example, C(1,1) is 3*1 þ8*4þ0*0 or 35. C(1,2) is 3*2þ8*5þ0*2 or 46.

A B C
�
3 8 0
1 2 5

�
�
2
4 1 2 3 1
4 5 1 2
0 2 3 0

3
5 ¼

�
35 46 17 19
9 22 20 5

�

In MATLAB, the * operator will perform this matrix multiplication:

>> A = [3 8 0; 1 2 5];
>> B = [1 2 3 1; 4 5 1 2; 0 2 3 0];
>> C = A*B
C =

35 46 17 19
9 22 20 5

PRACTICE 2.4
When two matrices have the same dimensions and are square, both array and matrix multiplication
can be performed on them. For the following two matrices perform A.*B, A*B, and B*A by hand and
then verify the results in MATLAB.

A B�
1 4
3 3

� �
1 2
-1 0

�

572.4 Matrix Multiplication

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2.4.1 Matrix Multiplication for Vectors
As vectors are just special cases of matrices, the matrix operations described
previously (addition, subtraction, scalar multiplication, multiplication, trans-
pose) also work on vectors, as long as the dimensions are correct.

For vectors, we have already seen that the transpose of a row vector is a column
vector, and the transpose of a column vector is a row vector.

To multiply vectors, they must have the same number of elements, but one
must be a row vector and the other a column vector. For example, for
a column vector c and row vector r:

c ¼

2
664
5
3
7
1

3
775 r ¼ ½6 2 3 4�

Note that r is 1 x 4, and c is 4 x 1, so

½r�1 x 4½c�4 x 1 ¼ ½s�1 x 1

or, in other words, a scalar:

½6 2 3 4�

2
664
5
3
7
1

3
775 ¼ 6�5þ 2�3þ 3�7þ 4�1 ¼ 61

whereas [c] 4 x 1 [r] 1 x 4 ¼ [M] 4 x 4, or in other words a 4 x 4 matrix:2
664
5
3
7
1

3
775½6 2 3 4� ¼

2
664
30 10 15 20
18 6 9 12
42 14 21 28
6 2 3 4

3
775

In MATLAB, these operations are accomplished using the * operator, which is
the matrix multiplication operator. First, the column vector c and row vector r
are created.

>> c = [5 3 7 1]';
>> r = [6 2 3 4];
>> r*c
ans =

61

>> c*r
ans =

30 10 15 20
18 6 9 12
42 14 21 28
6 2 3 4

58 CHAPTER 2: Vectors and Matrices

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

There are also operations specific to vectors: the dot product and cross product.
The dot product, or inner product, of two vectors a and b is written as a , b and
is defined as

a1b1 þ a2b2 þ a3b3 þ.þ anbn ¼
Xn
i¼1

aibi

where both a and b have n elements, and ai and bi represent elements in the
vectors. In other words, this is like matrix multiplication when multiplying
a row vector a by a column vector b; the result is a scalar. This can be
accomplished using the * operator and transposing the second vector, or by
using the dot function in MATLAB:

>> vec1 = [4 2 5 1];
>> vec2 = [3 6 1 2];
>> vec1*vec2'
ans =

31

>> dot(vec1,vec2)
ans =

31

The cross product or outer product a x b of two vectors a and b is defined only
when both a and b have three elements. It can be defined as a matrix multi-
plication of a matrix composed from the elements from a in a particular
manner shown here and the column vector b.

a x b ¼
2
4 0 �a3 a2

a3 0 �a1
�a2 a1 0

3
5
2
4 b1
b2
b3

3
5 ¼ ½a2b3 � a3b2; a3b1 � a1b3; a1b2 � a2b1�

MATLAB has a built-in function cross to accomplish this.

>> vec1 = [4 2 5];
>> vec2 = [3 6 1];
>> cross(vec1,vec2)
ans =

-28 11 18

2.5 LOGICAL VECTORS
Logical vectors use relational expressions that result in true/false values.

2.5.1 Relational Expressions with Vectors and Matrices
Relational operators can be used with vectors and matrices. For example, let’s
say that there is a vector vec, and we want to compare every element in the
vector to 5 to determine whether it is greater than 5 or not. The result would be
a vector (with the same length as the original) with logical true or false values.

592.5 Logical Vectors

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

>> vec = [5 9 3 4 6 11];
>> isg = vec > 5
isg =

0 1 0 0 1 1

Note that this creates a vector consisting of all logical true or false values.
Although the result is a vector of ones and zeros, and numerical operations can
be done on the vector isg, its type is logical rather than double.

>> doubres = isg þ 5
doubres =

5 6 5 5 6 6

>> whos
Name Size Bytes Class

doubres 1x6 48 double array
isg 1x6 6 logical array
vec 1x6 48 double array

To determine how many of the elements in the vector vec were greater than 5,
the sum function could be used on the resulting vector isg:

>> sum(isg)
ans =

3

What we have done is to create a logical vector isg. This logical vector can be
used to index into the original vector. For example, if only the elements from
the vector that are greater than 5 are desired:

>> vec(isg)
ans =

9 6 11

This is called logical indexing. Only the elements from vec for which the cor-
responding element in the logical vector isg is logical true are returned.

QUICK QUESTION!

Why doesn’t the following work?

>> vec = [5 9 3 4 6 11];
>> v = [0 1 0 0 1 1];
>> vec(v)
Subscript indices must either be real
positive integers or logicals.

Answer
The difference between the vector in this example and isg is
that isg is a vector of logicals (logical 1s and 0s), whereas

[0 1 0 0 1 1] by default is a vector of double values. Only
logical 1s and 0s can be used to index into a vector.
So, type casting the variable v would work:

>> v = logical(v);
>> vec(v)
ans =

9 6 11

60 CHAPTER 2: Vectors and Matrices

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

To create a vector or matrix of all logical 1s or 0s, the functions true and false
can be used.

>> false(2)
ans =

0 0
0 0

>> true(1,5)
ans =

1 1 1 1 1

The functions true and false and are faster and manage memory more
efficiently than using logical with zeros or ones.

2.5.2 Logical Built-in Functions
There are built-in functions in MATLAB, which are useful in conjunction with
logical vectors or matrices; two of these are the functions any and all. The
function any returns logical true if any element in a vector represents true, and
false if not. The function all returns logical true only if all elements represent
true. Here are some examples.

>> any(isg)
ans =

1
>> all(true(1,3))
ans =

1

For the following variable vec2, some, but not all, elements are true; conse-
quently, any returns true but all returns false.

>> vec2 = logical([1 1 0 1])
vec2 =

1 1 0 1
>> any(vec2)
ans =

1
>> all(vec2)
ans =

0

The function find returns the indices of a vector that meet given
criteria. For example, to find all of the elements in a vector that are greater
than 5:

612.5 Logical Vectors

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

>> vec = [5 3 6 7 2]
vec =

5 3 6 7 2
>> find(vec > 5)
ans =

3 4

For matrices, the find function will use linear indexing when returning the
indices that meet the specified criteria. For example:

>> mata = randi(10,2,4)
mata =

5 6 7 8
9 7 5 3

>> find(mata == 5)
ans =

1
6

For both vectors and matrices, an empty vector will be returned if no elements
match the criterion. For example,

>> find(mata == 11)
ans =

Empty matrix: 0-by-1

The function isequal is useful in comparing arrays. In MATLAB, using the
equality operator with arrays will return 1 or 0 for each element; the all
function could then be used on the resulting array to determine whether all
elements were equal or not. The built-in function isequal also accomplishes
this:

>> vec1 = [1 3 -4 2 99];
>> vec2 = [1 2 -4 3 99];
>> vec1 == vec2
ans =

1 0 1 0 1
>> all(vec1 == vec2)
ans =

0
>> isequal(vec1,vec2)
ans =

0

However, one difference is that if the two arrays are not the same dimensions,
the isequal function will return logical 0, whereas using the equality operator
will result in an error message.

62 CHAPTER 2: Vectors and Matrices

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

QUICK QUESTION!

If we have a vector vec that erroneously stores negative
values, how can we eliminate those negative values?

Answer
One method is to determine where they are and delete these
elements:

>> vec = [11 -5 33 2 8 -4 25];
>> neg = find(vec < 0)
neg =

2 6

>> vec(neg) = []
vec =

11 33 2 8 25

Alternatively, we can just use a logical vector rather than find:

>> vec = [11 -5 33 2 8 -4 25];
>> vec(vec < 0) = []
vec =

11 33 2 8 25

PRACTICE 2.5
Modify the result seen in the previous Quick Question!. Instead of deleting the “bad” elements,
retain only the “good” ones. (Hint: do it two ways, using find and using a logical vector with
the expression vec >¼ 0.)

MATLAB also has or and and operators that work elementwise for arrays:

These operators will compare any two vectors or matrices, as long as they are
the same size, element by element, and return a vector or matrix of the same
size of logical 1s and 0s. The operators k and && are only used with scalars, not
matrices. For example:

>> v1 = logical([1 0 1 1]);
>> v2 = logical([0 0 1 0]);

>> v1 & v2
ans =

0 0 1 0

>> v1 j v2
ans =

1 0 1 1

>> v1 && v2
Operands to the k and && operators must be convertible to logical
scalar values.

Operator Meaning

j elementwise or for arrays

& elementwise and for arrays

632.5 Logical Vectors

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

As with the numerical operators, it is important to know the operator prece-
dence rules. Table 2.1 shows the rules for the operators that have been covered
so far, in the order of precedence.

2.6 APPLICATIONS: THE DIFF AND MESHGRID
FUNCTIONS
Two functions that can be useful in working with applications of vectors and
matrices include diff and meshgrid. The function diff returns the differences
between consecutive elements in a vector. For example,

>> diff([4 7 15 32])
ans =

3 8 17

>> diff([4 7 2 32])
ans =

3 -5 30

For a vector v with a length of n, the length of diff(v) will be n e 1. For
a matrix, the diff function will operate on each column.

>> mat = randi(20, 2,3)
mat =

17 3 13
19 19 2

>> diff(mat)
ans =

2 16 -11

Table 2.1 Operator Precedence Rules

Operators Precedence

parentheses: () Highest
transpose and power: ', ^, .^
unary: negation (-), not (w)
multiplication, division *,/,\,.*,./,.\
addition, subtraction þ, -
relational <, <=, >, >=, ==, w=
element-wise and &
element-wise or j
and && (scalars)
or k (scalars)
assignment = Lowest

64 CHAPTER 2: Vectors and Matrices

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

As an example, a vector that stores a signal can contain both positive and
negative values. (For simplicity, we will assume no zeros, however.) For many
applications it is useful to find the zero crossings, or where the signal goes from
being positive to negative or vice versa. This can be accomplished using the
functions sign, diff, and find.

>> vec = [0.2 -0.1 -0.2 -0.1 0.1 0.3 -0.2];
>> sv = sign(vec)
sv =

1 -1 -1 -1 1 1 -1

>> dsv = diff(sv)
dsv =

-2 0 0 2 0 -2

>> find(dsv w= 0)
ans =

1 4 6

This shows that the signal crossings are between elements 1 and 2, 4 and 5,
and 6 and 7.

The meshgrid function can specify the x and y coordinates of points
in images, or can be used to calculate functions on two variables x and y.
It receives as input arguments two vectors, and returns as output
arguments two matrices that specify separately x and y values. For example,
the x and y coordinates of a 2 x 3 image would be specified by the
coordinates:

(1,1) (2,1) (3,1)
(1,2) (2,2) (3,2)

The matrices that separately specify the coordinates are created by
the meshgrid function, where x iterates from 1 to 3 and y iterates from
1 to 2:

>> [x y] = meshgrid(1:3,1:2)
x =

1 2 3
1 2 3

y =
1 1 1
2 2 2

As another example, let’s say we want to evaluate a function f of two variables
x and y:

f(x,y) = 2*x þ y

652.6 Applications: The diff and meshgrid Functions

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

where x ranges from 1 to 4 and y ranges from 1 to 3. We can accomplish this
by creating x and y matrices using meshgrid, and then the expression to
calculate f uses scalar multiplication and array addition.

>> [x y] = meshgrid(1:4,1:3)
x =

1 2 3 4
1 2 3 4
1 2 3 4

y =
1 1 1 1
2 2 2 2
3 3 3 3

>> f = 2*x þ y
f =

3 5 7 9
4 6 8 10
5 7 9 11

n Explore Other Interesting Features
n There are many functions that create special matrices (e.g., hilb for

a Hilbert matrix, magic, and pascal).
n The gallery function, which can return many different types of test

matrices for problems.
n The ndims function to find the number of dimensions of an argument.
n The shiftdim function.
n The circshift function. How can you get it to shift a row vector, resulting

in another row vector?
n How to reshape a three-dimensional matrix.
n Passing three-dimensional matrices to functions. For example, if you

pass a 3 x 5 x 2 matrix to the sum function, what would be the size of
the result? n

n Summary
Common Pitfalls
n Attempting to create a matrix that does not have the same number of

values in each row.
n Confusing matrix multiplication and array multiplication. Array

operations, including multiplication, division, and exponentiation, are
performed term by term (so the arrays must have the same size); the
operators are .*, ./, .\, and .^. For matrix multiplication to be possible,
the inner dimensions must agree and the operator is *.

66 CHAPTER 2: Vectors and Matrices

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

n Attempting to use an array of double 1s and 0s to index into an array
(must be logical, instead).

n Forgetting that for array operations based on multiplication the dot
must be used in the operator. In other words, for multiplying, dividing
by, dividing into, or raising to an exponent term by term, the operators
are .*, ./, .\, and .^.

n Attempting to use k or && with arrays. Always use j and & when working
with arrays; k and && are only used with scalars.

Programming Style Guidelines
n If possible, try not to extend vectors or matrices, as it is not very

efficient.
n Do not use just a single index when referring to elements in a matrix;

instead, use both the row and column subscripts (use subscripted
indexing rather than linear indexing).

n To be general, never assume that the dimensions of any array (vector or
matrix) are known. Instead, use the function length or numel to
determine the number of elements in a vector, and the function size for
a matrix:

len = length(vec);

[r, c] = size(mat);

n Use true instead of logical(1) and false instead of logical(0), especially
when creating vectors or matrices. n

MATLAB Functions and Commands

linspace end max any
logspace reshape sum all
zeros fliplr prod find
ones flipud cumsum isequal
length rot90 cumprod diff
size repmat dot meshgrid
numel min cross

MATLAB Operators

colon : matrix multiplication *
transpose ’ elementwise or for matrices j
array operators .^, .*, ./, .\ elementwise and for matrices &

67Summary

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

