
CHAPTER 4

Selection Statements

KEY TERMS

selection statements

branching statements

condition

action

temporary variable

error-checking

nesting statements

cascading if-else

“is” functions

In the scripts and functions we’ve seen thus far, every statement was executed
in sequence. That is not always desirable, and in this chapter we’ll see how to
make choices as to whether statements are executed or not, and how to choose
between or among statements. The statements that accomplish this are called
selection or branching statements.

The MATLAB� software has two basic statements that allow us to make
choices: the if statement and the switch statement. The if statement has
optional else and elseif clauses for branching. The if statement uses expres-
sions that are logically true or false. These expressions use relational and
logical operators. MATLAB also has a menu function that presents choices to
the user; this will be covered at the end of this chapter.

4.1 THE IF STATEMENT
The if statement chooses whether another statement, or group of statements, is
executed or not. The general form of the if statement is:

if condition
action

end

A condition is a relational expression that is conceptually, or logically, true or
false. The action is a statement, or a group of statements, that will be executed
if the condition is true. When the if statement is executed, first the condition is

MATLAB�. http://dx.doi.org/10.1016/B978-0-12-405876-7.00004-3

Copyright � 2013 Elsevier Inc. All rights reserved.

117

CONTENTS

4.1 The if
Statement..117

4.2 The if-else
Statement..121

4.3 Nested if-else
Statements 123

4.4 The switch
Statement..129

4.5 The menu
Function131

4.6 The “is” Func-
tions in
MATLAB....133

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://dx.doi.org/10.1016/B978-0-12-405876-7.00004-3
http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

evaluated. If the value of the condition is true, the action will be executed; if
not, the action will not be executed. The action can be any number of state-
ments until the reserved word end; the action is naturally bracketed by the
reserved words if and end. (Note that this is different from the end that is used
as an index into a vector or matrix.) The action is usually indented to make it
easier to see.

For example, the following if statement checks to see whether the value of
a variable is negative. If it is, the value is changed to a zero; otherwise, nothing
is changed.

if num < 0
num = 0

end

If statements can be entered in the Command Window, although they
generally make more sense in scripts or functions. In the Command Window,
the if line would be entered, followed by the Enter key, the action, the Enter
key, and, finally, end and Enter. The results will follow immediately. For
example, the preceding if statement is shown twice here.

>> num = -4;
>> if num < 0

num = 0
end

num =
0

>> num = 5;
>> if num < 0

num = 0
end

>>

Note that the output from the assignment is not suppressed, so the result of
the action will be shown if the action is executed. The first time the value of the
variable is negative so the action is executed and the variable is modified, but,
in the second case, the variable is positive so the action is skipped.

This may be used, for example, to make sure that the square root function is
not used on a negative number. The following script prompts the user for
a number and prints the square root. If the user enters a negative number the if
statement changes it to zero before taking the square root.

118 CHAPTER 4: Selection Statements

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

sqrtifexamp.m

% Prompt the user for a number and print its sqrt
num = input('Please enter a number: ');

% If the user entered a negative number, change it
if num < 0

num = 0;
end
fprintf('The sqrt of %.1f is %.1f\n',num,sqrt(num))

Here are two examples of running this script:

>> sqrtifexamp
Please enter a number: -4.2
The sqrt of 0.0 is 0.0

>> sqrtifexamp
Please enter a number: 1.44
The sqrt of 1.4 is 1.2

Note that in the script the output from the assignment statement is
suppressed. In this case, the action of the if statement was a single assignment
statement. The action can be any number of valid statements. For example, we
may wish to print a note to the user to say that the number entered was being
changed. Also, instead of changing it to zero we will use the absolute value of
the negative number entered by the user.

sqrtifexampii.m

% Prompt the user for a number and print its sqrt

num = input('Please enter a number: ');

% If the user entered a negative number, tell
% the user and change it
if num < 0

disp('OK, we''ll use the absolute value')
num = abs(num);

end
fprintf('The sqrt of %.1f is %.1f\n',num,sqrt(num))

>> sqrtifexampii
Please enter a number: -25
OK, we'll use the absolute value
The sqrt of 25.0 is 5.0

Note that, as seen in this example, two single quotes in the disp statement are
used to print one single quote.

PRACTICE 4.1
Write an if statement that would print “Hey, you get overtime!” if the value of a variable hours is
greater than 40. Test the if statement for values of hours less than, equal to, and greater than 40.
Will it be easier to do this in the Command Window or in a script?

1194.1 The if Statement

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

QUICK QUESTION!

Assume that we want to create a vector of increasing integer
values frommymin tomymax.Wewillwrite a function createvec
that receives two input arguments, mymin and mymax, and
returns a vector with values from mymin to mymax in steps of
one. First, we would make sure that the value of mymin is less
than the value of mymax. If not, we would need to exchange
their values before creating the vector. How would we accom-
plish this?

Answer
To exchange values, a third variable e a temporary variable e

is required. For example, let’s say that we have two variables,
a and b, storing the values:

a = 3;
b = 5;

To exchange values, we could not just assign the value of b to
a, as follows:

a = b;

If that were done, then the value of a (the 3), is lost! Instead, we
need to assign the value of a first to a temporary variable so
that the value is not lost. The algorithm would be:

n assign the value of a to temp
n assign the value of b to a
n assign the value of temp to b.

>> temp = a;
>> a = b
a =

5
>> b = temp
b =

3

Now, for the function. An if statement is used to determine
whether or not the exchange is necessary.

createvec.m

function outvec = createvec(mymin, mymax)
% createvec creates a vector that iterates from a
% specified minimum to a maximum
% Format of call: createvec(minimum, maximum)
% Returns a vector

% If the "minimum" isn't smaller than the "maximum",
% exchange the values using a temporary variable
if mymin > mymax

temp = mymin;
mymin = mymax;
mymax = temp;

end

% Use the colon operator to create the vector
outvec = mymin:mymax;
end

Examples of calling the function are:

>> createvec(4,6)
ans =

4 5 6

>> createvec(7,3)
ans =

3 4 5 6 7

120 CHAPTER 4: Selection Statements

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

4.1.1 Representing Logical True and False
It has been stated that conceptually true expressions have the logical value of
1 and expressions that are conceptually false have the logical value of 0.
Representing the concepts of logical true and false in MATLAB is slightly
different: the concept of false is represented by the value of 0, but the concept
of true can be represented by any nonzero value (not just 1). This can lead to
some strange logical expressions. For example:

>> all(1:3)
ans =

1

Also, consider the following if statement:

>> if 5
disp('Yes, this is true!')

end
Yes, this is true!

As 5 is a nonzero value, the condition is true. Therefore, when this logical
expression is evaluated, it will be true, so the disp function will be executed
and “Yes, this is true” is displayed. Of course, this is a pretty bizarre if
statement e one that hopefully would never be encountered!

However, a simple mistake in an expression can lead to a similar result. For
example, let’s say that the user is prompted for a choice of ‘Y’ or ‘N’ for a yes/
no question.

letter = input('Choice (Y/N): ','s');

In a script we might want to execute a particular action if the user responded
with ‘Y’. Most scripts would allow the user to enter either lowercase or
uppercase; for example, either ‘y’ or ‘Y’ to indicate “yes”. The proper expression
that would return true if the value of letter was ‘y’ or ‘Y’ would be

letter == 'y' k letter == 'Y'

However, if by mistake this was written as:

letter == 'y' k 'Y' %Note: incorrect!!

this expression would ALWAYS be true, regardless of the value of the variable
letter. This is because 'Y' is a nonzero value, so it is a true expression. Thefirst part
of the expression may be false, but as the second expression is true the entire
expression would be true, regardless of the value of the variable letter.

4.2 THE IF-ELSE STATEMENT
The if statement chooses whether or not an action is executed. Choosing
between two actions, or choosing from among several actions, is accom-
plished using if-else, nested if-else, and switch statements.

1214.2 The if-else Statement

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

The if-else statement is used to choose between two statements or sets of
statements. The general form is:

if condition
action1

else
action2

end

First, the condition is evaluated. If it is true, then the set of statements
designated as “action1” is executed, and that is the end of the if-else statement.
If, instead, the condition is false, the second set of statements designated as
“action2” is executed, and that is the end of the if-else statement. The first set
of statements (“action1”) is called the action of the if clause; it is what will be
executed if the expression is true. The second set of statements (“action2”) is
called the action of the else clause; it is what will be executed if the expression
is false. One of these actions, and only one, will be executed e which one
depends on the value of the condition.

For example, to determine and print whether or not a random number in the
range from 0 to 1 is less than 0.5, an if-else statement could be used:

if rand < 0.5
disp('It was less than .5!')

else
disp('It was not less than .5!')

end

PRACTICE 4.2
Write a script printsindegorrad that:

n will prompt the user for an angle
n will prompt the user for (r)adians or (d)egrees, with radians as the default
n if the user enters ‘d’, the sind function will be used to get the sine of the angle in degrees;

otherwise, the sin function will be used e which sine function to use will be based solely on
whether the user entered a ‘d’ or not (a ‘d’means degrees, so sind is used; otherwise, for any
other character the default of radians is assumed, so sin is used)

n will print the result.

Here are examples of running the script:

>> printsindegorrad
Enter the angle: 45
(r)adians (the default) or (d)egrees: d
The sin is 0.71

>> printsindegorrad
Enter the angle: pi
(r)adians (the default) or (d)egrees: r
The sin is 0.00

122 CHAPTER 4: Selection Statements

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

One application of an if-else statement is to check for errors in the
inputs to a script (this is called error-checking). For example, an earlier
script prompted the user for a radius and then used that to calculate the
area of a circle. However, it did not check to make sure that the radius was
valid (e.g., a positive number). Here is a modified script that checks the
radius:

checkradius.m

% This script calculates the area of a circle
% It error-checks the user's radius
radius = input('Please enter the radius: ');
if radius <= 0

fprintf('Sorry; %.2f is not a valid radius\n',radius)
else

area = calcarea(radius);
fprintf('For a circle with a radius of %.2f,',radius)
fprintf(' the area is %.2f\n',area)

end

Examples of running this script when the user enters invalid and then valid
radii are shown as follows:

>> checkradius
Please enter the radius: -4
Sorry; -4.00 is not a valid radius

>> checkradius
Please enter the radius: 5.5
For a circle with a radius of 5.50, the area is 95.03

The if-else statement in this example chooses between two actions:
printing an error message, or using the radius to calculate the area and then
printing out the result. Note that the action of the if clause is a single
statement, whereas the action of the else clause is a group of three
statements.

4.3 NESTED IF-ELSE STATEMENTS
The if-else statement is used to choose between two actions. To choose
from among more than two actions the if-else statements can be nested,
meaning one statement inside of another. For example, consider imple-
menting the following continuous mathematical function y ¼ f(x):

1234.3 Nested if-else Statements

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

y = 1 if x < -1
y = x2 if -1 � x � 2
y = 4 if x > 2

The value of y is based on the value of x, which could be in one of three
possible ranges. Choosing which range could be accomplished with three
separate if statements, as follows:

if x < -1
y = 1;

end
if x >= -1 && x <=2

y = x^2;
end
if x > 2

y = 4;
end

Note that the && in the expression of the second if statement is necessary.
Writing the expression as e1<¼x<¼2 would be incorrect; recall from Chapter
1 that that expression would always be true, regardless of the value of the
variable x.

As the three possibilities are mutually exclusive, the value of y can be deter-
mined by using three separate if statements. However, this is not very efficient
code: all three logical expressions must be evaluated, regardless of the range in
which x falls. For example, if x is less than e1, the first expression is true and 1
would be assigned to y. However, the two expressions in the next two if
statements are still evaluated. Instead of writing it this way, the statements can
be nested so that the entire if-else statement ends when an expression is found
to be true:

if x < -1
y = 1;

else
% If we are here, x must be >= -1
% Use an if-else statement to choose
% between the two remaining ranges
if x <= 2

y = x^2;
else

% No need to check
% If we are here, x must be > 2
y = 4;

end
end

124 CHAPTER 4: Selection Statements

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

By using a nested if-else to choose from among the three possibilities, not all
conditions must be tested as they were in the previous example. In this case, if
x is less than e1, the statement to assign 1 to y is executed and the if-else
statement is completed so no other conditions are tested. If, however, x is not
less than e1, then the else clause is executed. If the else clause is executed,
then we already know that x is greater than or equal to e1 so that part does not
need to be tested.

Instead, there are only two remaining possibilities: either x is less than or
equal to 2 or it is greater than 2. An if-else statement is used to
choose between those two possibilities. So, the action of the else clause was
another if-else statement. Although it is long, all of the above code is one if-
else statement, a nested if-else statement. The actions are indented to show
the structure of the statement. Nesting if-else statements in this way can be
used to choose from among 3, 4, 5, 6, . the possibilities are practically
endless!

This is actually an example of a particular kind of nested if-else called
a cascading if-else statement. This is a type of nested if-else statement in which
the conditions and actions cascade in a stair-like pattern.

Not all nested if-else statements are cascading. For example, consider the
following (which assumes that a variable x has been initialized):

if x >= 0
if x < 4

disp('a')
else

disp('b')
end

else
disp('c')

end

4.3.1 The elseif Clause

THE PROGRAMMING CONCEPT

In some programming languages, choosing from multiple options means using nested if-else
statements. However, MATLAB has another method of accomplishing this using the elseif
clause.

1254.3 Nested if-else Statements

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

THE EFFICIENT METHOD

To choose from among more than two actions, the elseif clause is used. For example, if there
are n choices (where n > 3 in this example), the following general form would be used:

if condition1
action1

elseif condition2
action2

elseif condition3
action3

% etc: there can be many of these
else

actionn % the nth action
end

The actions of the if, elseif, and else clauses are naturally bracketed by the reserved words if,
elseif, else, and end.

For example, the previous example could be written using the elseif clause, rather than nesting
if-else statements:

if x < -1
y = 1;

elseif x <= 2
y = x^2;

else
y = 4;

end

Note that in this example we only need one end. So, there are three ways of accomplishing the
original task: using three separate if statements, using nested if-else statements, and using an
if statement with elseif clauses, which is the simplest.

This could be implemented in a function that receives a value of x and returns the correspond-
ing value of y:

calcy.m

function y = calcy(x)
% calcy calculates y as a function of x
% Format of call: calcy(x)
% y = 1 if x < -1
% y = x^2 if -1 <= x <= 2
% y = 4 if x > 2

if x < -1
y = 1;

elseif x <= 2
y = x^2;

else
y = 4;

end
end

126 CHAPTER 4: Selection Statements

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

>> x = 1.1;
>> y = calcy(x)
y =

1.2100

QUICK QUESTION!

How could you write a function to determine whether an input
argument is a scalar, a vector, or a matrix?

Answer
To do this, the size function can be used to find the dimensions
of the input argument. If both the number of rows and columns
is equal to 1, then the input argument is a scalar. If, however,
only one dimension is 1, the input argument is a vector (either
a row or column vector). If neither dimension is 1, the input
argument is a matrix. These three options can be tested using
a nested if-else statement. In this example, the word ‘scalar’,
‘vector’, or ‘matrix’ is returned from the function.

findargtype.m

function outtype = findargtype(inputarg)
% findargtype determines whether the input
% argument is a scalar, vector, or matrix
% Format of call: findargtype(inputArgument)
% Returns a string

[r c] = size(inputarg);
if r == 1 && c == 1

outtype = 'scalar';
elseif r == 1 k c == 1

outtype = 'vector';
else

outtype = 'matrix';
end
end

Note that there is no need to check for the last case: if
the input argument isn’t a scalar or a vector, it must be
a matrix!

Examples of calling this function are:

>> findargtype(33)
ans =
scalar

>> disp(findargtype(2:5))
vector

>> findargtype(zeros(2,3))
ans =
matrix

1274.3 Nested if-else Statements

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

PRACTICE 4.3
Modify the function findargtype to return either ‘scalar’, ‘row vector’, ‘column vector’, or ‘matrix’,
depending on the input argument.

PRACTICE 4.4
Modify the original function findargtype to use three separate if statements instead of a nested
if-else statement.

Another example demonstrates choosing from more than just a few options.
The following function receives an integer quiz grade, which should be in the
range from 0 to 10. The function then returns a corresponding letter grade,
according to the following scheme: a 9 or 10 is an ‘A’, an 8 is a ‘B’, a 7 is a ‘C’,
a 6 is a ‘D’, and anything below that is an ‘F’. As the possibilities are mutually
exclusive, we could implement the grading scheme using separate if state-
ments. However, it is more efficient to have one if-else statement with
multiple elseif clauses. Also, the function returns the letter ‘X’ if the quiz grade
is not valid. The function assumes that the input is an integer.

letgrade.m

function grade = letgrade(quiz)
% letgrade returns the letter grade corresponding
% to the integer quiz grade argument
% Format of call: letgrade(integerQuiz)
% Returns a character

% First, error-check
if quiz < 0 k quiz > 10

grade = 'X';

% If here, it is valid so figure out the
% corresponding letter grade
elseif quiz == 9 k quiz == 10

grade = 'A';
elseif quiz == 8

grade = 'B';
elseif quiz == 7

grade = 'C';
elseif quiz == 6

grade = 'D';
else

grade = 'F';
end
end

128 CHAPTER 4: Selection Statements

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Three examples of calling this function are:
>> quiz = 8;
>> lettergrade = letgrade(quiz)
lettergrade =
B

>> quiz = 4;
>> letgrade(quiz)
ans =
F

>> lg = letgrade(22)
lg =
X

In the part of this if statement that chooses the appropriate letter
grade to return, all of the logical expressions are testing the value of
the variable quiz to see if it is equal to several possible values, in sequence (first
9 or 10, then 8, then 7, etc.). This part can be replaced by a switch statement.

4.4 THE SWITCH STATEMENT
A switch statement can often be used in place of a nested if-else or an if
statement with many elseif clauses. Switch statements are used when
an expression is tested to see whether it is equal to one of several possible
values.

The general form of the switch statement is:
switch switch_expression

case caseexp1
action1

case caseexp2
action2

case caseexp3
action3

% etc: there can be many of these
otherwise

actionn
end

The switch statement starts with the reserved word switch, and ends with
the reserved word end. The switch_expression is compared, in sequence, to the
case expressions (caseexp1, caseexp2, etc.). If the value of the switch_expression
matches caseexp1, for example, then action1 is executed and the switch
statement ends. If the value matches caseexp3, then action3 is executed,
and in general if the value matches caseexpi where i can be any integer
from 1 to n, then actioni is executed. If the value of the switch_expression
does not match any of the case expressions, the action after the word

1294.4 The switch Statement

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

otherwise is executed (the nth action, actionn) if there is an otherwise (if
not, no action is executed). It is not necessary to have an otherwise clause,
although it is frequently useful. The switch_expression must be either a scalar
or a string.

For the previous example, the switch statement can be used as follows:

switchletgrade.m

function grade = switchletgrade(quiz)
% switchletgrade returns the letter grade corresponding
% to the integer quiz grade argument using switch
% Format of call: switchletgrade(integerQuiz)
% Returns a character

% First, error-check
if quiz < 0 k quiz > 10

grade = 'X';
else

% If here, it is valid so figure out the
% corresponding letter grade using a switch
switch quiz

case 10
grade = 'A';

case 9
grade = 'A';

case 8
grade = 'B';

case 7
grade = 'C';

case 6
grade = 'D';

otherwise
grade = 'F';

end
end
end

Here are two examples of calling this function:

>> quiz = 22;
>> lg = switchletgrade(quiz)
lg =
X

>> switchletgrade(9)
ans =
A

Note

It is assumed that the

user will enter an

integer value. If the

user does not, either an

error message will be

printed or an incorrect

result will be returned.

Methods for remedying

this will be discussed in

Chapter 5.

130 CHAPTER 4: Selection Statements

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

As the same action of printing ‘A’ is desired for more than one grade, these can
be combined as follows:

switch quiz
case {10,9}

grade = 'A';
case 8

grade = 'B';
% etc.

The curly braces around the case expressions 10 and 9 are necessary.

In this example, we error-checked first using an if-else statement. Then, if the
grade was in the valid range, a switch statement was used to find the corre-
sponding letter grade.

Sometimes the otherwise clause is used for the error message rather than first
using an if-else statement. For example, if the user is supposed to enter only
a 1, 3, or 5, the script might be organized as follows:

switcherror.m

% Example of otherwise for error message
choice = input('Enter a 1, 3, or 5: ');

switch choice
case 1

disp('It''s a one!!')
case 3

disp('It''s a three!!')
case 5

disp('It''s a five!!')
otherwise

disp('Follow directions next time!!')
end

In this example, actions are taken if the user correctly enters one of the valid
options. If the user does not, the otherwise clause handles printing an error
message. Note the use of two single quotes within the string to print one quote.

>> switcherror
Enter a 1, 3, or 5: 4
Follow directions next time!!

Note that the order of the case expressions does not matter, except that this is
the order in which they will be evaluated.

4.5 THE MENU FUNCTION
MATLAB has a built-in function called menu that will display a Figure
Window with pushbuttons for the options. The first string passed to the menu

1314.5 The menu Function

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

function is the heading (an instruction), and the rest are labels that appear on
the pushbuttons. The function returns the number of the button that is
pushed. For example,

>> mypick = menu('Pick a pizza','Cheese','Shroom','Sausage');

will display the Figure Window seen in Figure 4.1 and store the result of the
user’s button push in the variable mypick.

There are three buttons, the equivalent values of which are 1, 2, and 3. For
example, if the user pushes the “Sausage” button, mypick would have the
value 3:

>> mypick
mypick =

3

Note that the strings ‘Cheese’, ‘Shroom’, and ‘Sausage’ are just labels on the
buttons. The actual value of the button push in this example would be 1, 2, or
3, so that is what would be stored in the variable mypick.

A script that uses this menu function would then use either an if-else state-
ment or a switch statement to take an appropriate action based on the button
pushed. For example, the following script simply prints which pizza to order,
using a switch statement.

pickpizza.m

%This script asks the user for a type of pizza
% and prints which type to order using a switch

mypick = menu('Pick a pizza','Cheese','Shroom','Sausage');
switch mypick

case 1
disp('Order a cheese pizza')

case 2
disp('Order a mushroom pizza')

case 3
disp('Order a sausage pizza')

otherwise
disp('No pizza for us today')

end

This is an example of running this script and clicking on the “Sausage” button:

>> pickpizza
Order a sausage pizza

FIGURE 4.1 Menu
figure window

132 CHAPTER 4: Selection Statements

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

QUICK QUESTION!

How could the otherwise action get executed in this switch
statement?

Answer
If the user clicks on the red “X” on the top of the menu box to
close it instead of on one of the three buttons, the value

returned from the menu function will be 0, which will cause
the otherwise clause to be executed. This could also have
been accomplished using a case 0 label instead of
otherwise.

Instead of using a switch statement in this script, an alternative method would
be to use an if-else statement with elseif clauses.

pickpizzaifelse.m

%This script asks the user for a type of pizza
% and prints which type to order using if-else
mypick = menu('Pick a pizza','Cheese', 'Shroom','Sausage');
if mypick == 1

disp('Order a cheese pizza')
elseif mypick == 2

disp('Order a mushroom pizza')
elseif mypick == 3

disp('Order a sausage pizza')
else

disp('No pizza for us today')
end

PRACTICE 4.5
Write a function that will receive one number as an input argument. It will use the menu function
to display ‘Choose a function’ and will have buttons labeled ‘fix’, ‘floor’, and ‘abs’. Using a switch
statement, the function will then calculate and return the requested function (e.g., if ‘abs’ is chosen,
the function will return the absolute value of the input argument). Choose a fourth function to
return if the user clicks on the red ‘X’ instead of pushing a button.

4.6 THE “IS” FUNCTIONS IN MATLAB
There are a lot of functions that are built into MATLAB that test whether or
not something is true; these functions have names that begin with the word
“is”. For example, we have already seen the use of the isequal function to
compare arrays for equality. As another example, the function called isletter
returns logical 1 if the character argument is a letter of the alphabet or 0 if it
is not:

1334.6 The “is” Functions in MATLAB

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

>> isletter('h')
ans =

1
>> isletter('4')
ans =

0

The isletter function will return logical true or false so it can be used in
a condition in an if statement. For example, here is code that would prompt
the user for a character, and then print whether or not it is a letter:

mychar = input('Please enter a char: ','s');
if isletter(mychar)

disp('Is a letter')
else

disp('Not a letter')
end

When used in an if statement, it is not necessary to test the value to see
whether the result from isletter is equal to 1 or 0; this is redundant. In other
words, in the condition of the if statement,

isletter(mychar)

and

isletter(mychar) == 1

would produce the same results.

QUICK QUESTION!

How can we write our own function myisletter to accomplish
the same result as isletter?

Answer
The function would compare the character’s position within
the character encoding.

myisletter.m

function outlog = myisletter(inchar)
% myisletter returns true if the input argument
% is a letter of the alphabet or false if not
% Format of call: myisletter(inputCharacter)
% Returns logical 1 or 0

outlog = inchar >= 'a' && inchar <= 'z' .

k inchar >= 'A' && inchar <= 'Z';
end

Note that it is necessary to check for both lowercase
and uppercase letters.

134 CHAPTER 4: Selection Statements

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

The function isempty returns logical true if a variable is empty, logical false if it
has a value, or an error message if the variable does not exist. Therefore, it can be
used to determine whether a variable has a value yet or not. For example,

>> clear
>> isempty(evec)
Undefined function or variable 'evec'.

>> evec = [];
>> isempty(evec)
ans =

1

>> evec = [evec 5];
>> isempty(evec)
ans =

0

The isempty function will also determine whether or not a string variable is
empty. For example, this can be used to determine whether the user entered
a string in an input function:

>> istr = input('Please enter a string: ','s');
Please enter a string:
>> isempty(istr)
ans =

1

PRACTICE 4.6
Prompt the user for a string, and then print either the string that the user entered or an error
message if the user did not enter anything.

The function iskeyword will determine whether or not a string is the name of
a keyword in MATLAB, and therefore something that cannot be used as an
identifier name. By itself (with no arguments), it will return the list of all
keywords. Note that the names of functions like “sin” are not keywords, so
their values can be overwritten if used as an identifier name.

>> iskeyword('sin')
ans =

0

>> iskeyword('switch')
ans =

1

>> iskeyword
ans =

'break'
'case'
'catch'

% etc.

1354.6 The “is” Functions in MATLAB

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

There are many other “is” functions; the complete list can be found in the Help
browser.

n Explore Other Interesting Features
n There are many other “is” functions. As more concepts are covered in the

book, more and more of these functions will be introduced. Others you
may want to explore now include isvarname, and functions that will tell
you whether an argument is a particular type or not (ischar, isfloat,
isinteger, islogical, isnumeric, isstr, isreal).

n There are “is” functions to determine the type of an array: isvector,
isrow, iscolumn.

n The try/catch functions are a particular type of if-else used to find and
avoid potential errors. They may be a bit complicated to understand at
this point, but keep them in mind for the future! n

n Summary
Common Pitfalls
n Using ¼ instead of == for equality in conditions.
n Putting a space in the keyword elseif.
n Not using quotes when comparing a string variable to a string,

such as

letter == y

instead of

letter == 'y'

n Not spelling out an entire logical expression. An example is typing

radius k height <= 0

instead of

radius <= 0 k height <= 0

or typing

letter == 'y' k 'Y'

instead of

letter == 'y' k letter == 'Y'

Note that these are logically incorrect, but would not result in error
messages. Note also that the expression “letter == 'y' k 'Y'” will always
be true, regardless of the value of the variable letter, as 'Y' is a nonzero
value and therefore a true expression.

136 CHAPTER 4: Selection Statements

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

n Writing conditions that are more complicated than necessary, such as

if (x < 5) == 1

instead of just
if (x < 5)

(The “¼¼1” is redundant.)
n Using an if statement instead of an if-else statement for error-checking;

for example,

if error occurs
print error message

end

continue rest of code

instead of
if error occurs

print error message
else

continue rest of code
end

In the first example, the error message would be printed but then the
program would continue anyway.

Programming Style Guidelines
n Use indentation to show the structure of a script or function. In

particular, the actions in an if statement should be indented.
n When the else clause isn’t needed, use an if statement rather than an

if-else statement. The following is an example:

if unit == 'i'
len = len * 2.54;

else
len = len; % this does nothing so skip it!

end

Instead, just use:

if unit == 'i'
len = len * 2.54;

end

n Do not put unnecessary conditions on else or elseif clauses. For
example, the following prints one thing if the value of a variable number
is equal to 5, and something else if it is not.

if number == 5
disp('It is a 5')

elseif number w= 5
disp('It is not a 5')

end

137Summary

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

The second condition, however, is not necessary. Either the value is 5 or
not, so just the else would handle this:

if number == 5
disp('It is a 5')

else
disp('It is not a 5')

end

n When using the menu function, ensure that the program handles the
situation when the user clicks on the red ‘X’ on the menu box rather than
pushing one of the buttons. n

MATLAB Reserved Words

if else
switch elseif
case otherwise

MATLAB Functions and Commands

menu isletter
isempty iskeyword

Exercises
1. Write a script that tests whether the user can follow instructions. It prompts the

user to enter an ‘x’. If the user enters anything other than an ‘x’, it prints an error
message; otherwise, the script does nothing.

2. Write a function nexthour that receives one integer argument, which is an hour
of the day, and returns the next hour. This assumes a 12-hour clock; so, for
example, the next hour after 12 would be 1. Here are two examples of calling this
function.

>> fprintf('The next hour will be %d.\n',nexthour(3))

The next hour will be 4.

>> fprintf('The next hour will be %d.\n',nexthour(12))

The next hour will be 1.

3. Write a script to calculate the volume of a pyramid, which is 1/3 * base * height,
where the base is length * width. Prompt the user to enter values for the length,
width, and height, and then calculate the volume of the pyramid. When the user
enters each value, he or she will then also be prompted for either ‘i’ for inches or ‘c’
for centimeters. (Note that 2.54 cm ¼ 1 inch.) The script should print the volume

138 CHAPTER 4: Selection Statements

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

	4. Selection Statements
	4.1 The if Statement
	4.1.1 Representing Logical True and False

	4.2 The if-else Statement
	4.3 Nested if-else Statements
	4.3.1 The elseif Clause

	4.4. The switch Statement
	4.5. The menu Function
	4.6. The “is” Functions in MATLAB

