University of Faculty of Ele	Technology and Education ctrical & Electronic Engineering
	Lecture: IMAGE PROCESSING Chapter 4: Image Filtering
Nguyen Thanh Hai, PhD	1

University of Technology and Education Faculty of Electrical & Electronic Engineering			In	na	g	e I	Fil	te	ri	ng	J							
		1	Ori	gin	L													
Fig. 4.2(a) correlation	(1)	* 0	0	0	f1	0	0	0	0				1	2	w 3	2	8	
method.	(2)	1	2	3	2	0 8	0	0	1	0	0	0	0					
Original is the 1st						t		Vi	trí l	bắt (tầu							
pixel to correlate to 5						1	Bổ s	sung	; các	c gia	i trị	zero	0					
	(3)	0	0	0	0	` 0	0	0	1	0	0	0	0	0	0	0	0	
		1	2	3	2	8	Ļ											
add Zeros as Step-3		0	0	0	03	0	0	0	1	0	0	0	0	0	0	0	0	
and then shift I by I			•	2	5	2	1			(a) 1	chi d	lich		ton	vi			
from left to right.									5	↓ ↓	un v			.011	••			
Every correlation is	(4)	0	0	0	0	0	0	0	1	0	0	0	0	0'	0	0	0	
calculated by the sum	(4)					1	2	3	2	× A		_						
of products of every												S	Sau	khi (dich	14 đ	on vi	
point and in this case,	(5)	0	0	0	0	0	0	0	1	0	0	0	0	0'	0	0	ŏ	
12 times shifted as	(0)												1	2	3	2	8 ▲	
result of Step-6								-		Sa	u ki	n a	icn :	xon	g			
	(6)			0	0	0 K	8 ết q	2 uả ti	3 ron	2 g qu	l an d	0 tầy	0 đủ	0	0			
	(7)					0	8	2	3	2	1	0	0					7
Nguyen Thanh Hai, PhD						K	ët qu	iå tu	rong	g qu	an r	út g	gọn					

University of Technology and Education																		
Faculty of Electrical & Electronic Engineering	Im	an		F	11	tc	ri	n	a									
		uy				···			9									
		Ţ	Or	igir	1												100	
	(9)	•	۵	0	1	0	0	٥	۵			,	v a	uợc 2	2 x0	ay 2	180	
Fig. 4.2(b) convolution	(0)	0	0	v	1	0	0	v	v				0	2	5	2	I	
method						0	0	0	1	0	0	0	0					
method	(9)	8	2	3	2	1												
Original is the 1st pixel, to																		
convolute to 5 values of w,		0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	
one can add zeros as Step-	(10)	8	2	3	2	1	•	•	-	•	-	•	•	•	•	•		
10 and rotate the window w		0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	
with a degree of 190 and		Ŭ	8	2	3	2	1	č	•	Č	Č	č	Č	Ŭ	Ŭ	Č	Ŷ	
then shift 1 by 1 from left to																		
right. It is calculated by the	(11)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	
sum of products of every	(11)					8	2	3	2	1								
point and in this case 12																		
times shifted and then as		0	0	0	0	0	0	٥	1	۵	0	٥	۵	0	٥	0	0	
	(12)	0	0	v	0	v	0	v	1	0	U	U	8	2	3	2	1	
result of Step-14													-	-	-	-	-	
	(13)			0	0	0	1	2	3	2	8	0	0	0	0			
	(15)					j	Kết	quả	tich	chậ	ip đ	ầy đ	tů .					
	(14)					0	1	2	3	2	8	0	0					_
	(14)					Ĭ	<ết o	quả	tích	chậ	p rí	it gç	'n					8
Nguyen Thanh Hai, PhD																		

Diversity of Electrical & Electronic Engineering Image Filtering In general, the correlation expression is described as below equation, the filter w(x, y) with the size of $m \times n$, the image f(x, y) and called $w(x, y) \not\approx f(x, y)$ $w(x, y) \not\approx f(x, y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) f(x + s, y + t)$ Similarly, the convolution of w(x, y) and f(x, y), called $w(x, y) \star f(x, y)$, is expressed as follows: $w(x, y) \star f(x, y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) f(x - s, y - t)$

The symbol *minus* means that the image f is rotated 180 degrees.

Nguyen Thanh Hai, PhD

cuu duong than cong . com

University of Technology and Education Faculty of Electrical & Electronic Engineering	
Origin $f(x,y)$ f sau khi được đệm các giá trị 0 0	
V1 tri bat dau voi w Két quả tương quan $1\overline{1}$ $\overline{2}$ $\overline{3}$ 0	
Nguyen Thanh Hai, PhD	10

9

University of Technology and Education Faculty of Electrical & Electronic Engineering	Image Filtering	
Some filters expressed	by mathematic methods:	
* Gaussian	$h_g(n_1, n_2) = e^{\frac{-(n_1^2 + n_2^2)}{2\sigma^2}}$	
or	$h(n_1, n_2) = \frac{h_g(n_1, n_2)}{\sum n_1 \sum n_2 h_g}$	
* Laplacian	$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$	
or	$\begin{bmatrix} \alpha & \frac{1-\alpha}{1+\alpha} & \frac{\alpha}{1+\alpha} \\ \frac{1-\alpha}{1+\alpha} & \frac{-4}{1+\alpha} & \frac{1-\alpha}{1+\alpha} \\ \frac{\alpha}{1+\alpha} & \frac{1-\alpha}{1+\alpha} & \frac{\alpha}{1+\alpha} \end{bmatrix}$	14
Nguyen Thanh Hai, PhD	$\lfloor 1 + \alpha 1 + \alpha 1 + \alpha \rfloor$	

University of Technology and Education Faculty of Electrical & Electronic Engineering	Image Filtering EQUENCY DOMAIN
According to diagram of Fig above, in MATLAB using the following func	frequency filtering can be expressed tions:
function g=dftfilt(f,H) F=fft2(f,size(H,1),size(H,2)); G=H.*F; g=ifft2(G); f=real(g); g=g(1:size(f,1),1:size(f,2)) end	an cong . com
Nguyen Thanh Hai, PhD	20

University of Technology and Education Faculty of Electrical & Electronic Engineering	Image Filtering EQUENCY DOMAIN
Ex 4.2 : Express image filtering spatial domain using Sobel an frequency domain using DFT	g in the d in the
clear all; f=imread('cameraman.tif'); h=fspecial('sobel'); sizeH=size(f)*2; H=freqz2(h,sizeH); H1=ifftshift(H); gd=dftfilt(f,H1); gs=imfilter(double(f),h); d=abs(gd-gs); gd=uint8(gd);imshow(gd); gd=uint8(gd);imshow(gs);	
Nguyen Thanh Hai, PhD	22

University of Technology and Education Faculty of Electrical & Electronic Engineering	Image Filtering FREQUENCY DOMAIN
Build function dftuv for calculat	ion of distance with grid of .
function [U,V]=dftuv(m,n) u=0:(m-1); v=0:(n-1); idx=find(u>m/2); u(idx)=u(idx)-m; udy=find(v>n/2); v(idy)=v(idy)-n; [V,U]=meshgrid(v,u); end	Ex of an image with 8×5 : $\begin{bmatrix} U,V] = dftuv(8,5); \\ D = U.^2 + V.^2 \\ D = \\ 0 & 1 & 4 & 4 & 1 \\ 1 & 2 & 5 & 5 & 2 \\ 4 & 5 & 8 & 8 & 5 \\ 9 & 10 & 13 & 13 & 10 \\ 16 & 17 & 20 & 20 & 17 \\ 9 & 10 & 13 & 13 & 10 \\ 4 & 5 & 8 & 8 & 5 \\ 1 & 2 & 5 & 5 & 2 \end{bmatrix}$
Nguyen Thanh Hai, PhD	

University of Technology and Educa Faculty of Electrical & Electronic Engine	Image Filtering G IN THE FREQUENCY DOMAIN	
Using function ffts frequency rectang ans = 20 13 8 5	shift (D) move coordinate to the center of the gular image (frequency retangle) and the result: 17 16 17 20 10 9 10 13 5 4 5 8 2 1 2 5	
4 5 8 10	1 0 1 4 2 1 2 5 5 4 5 8 9 10 13	
Nguyen Thanh Hai, PhD		25

University of Technology and Education Faculty of Electrical & Electronic Engineering	nage Filtering
Lowpass Filter: blurring imag	е
* Ideal LowPass Filter - ILPF) : the tran	nsfer functions is described as:
$H(u,v) = \begin{cases} 1\\ 0 \end{cases}$	$D(u, v) \le D_0$ $D(u, v) > D_0$
where D_0 is the cut-off frequency with distance from (u, v) to the filter cent	th non-negative value, $D(u, v)$ is the er. Orbit of $D(u, v) = D_0$ is a circle.
* Butterworth LowPass Filter - BLPF frequency D_0 , the transfer functions is) with <i>n</i> orders, the cut-off described as:
$H(u,v) = \frac{1}{1 + [D(u)]}$	$\frac{1}{(u,v)/D_0]^{2n}}$
Often define the cut-off frequency at po 50% compared with the max value 1)	ositions of $H(u, v) = 0.5$ (reduce when $D(u, v) = D_0$.
Nguyen Thanh Hai, PhD	26

University of Technology and Education Faculty of Electrical & Electronic Engineering	Image Filtering
EX: <i>Build</i> a <i>lowpass filter function</i> as lpfilter with 3 basic <i>filter</i> .	
function [H,D]=lpfilter(type,M,N,DO,n [U,V]=dftuv(M,N); D=sqrt(U.^2+V.^2); switch type case 'ideal' H=double(D<=DO); case 'btw' if nargin==4 n=1;) end H=1./(1+(D./DO).^(2*n)); case 'gaussian' H=exp(- (D.^2)./(2*(DO^2))); otherwise error('Unknown filter type'); end
Some functions in toolbox: - mesh(H): express information in 3E [M,N]=size(H). - mesh(H(1:k:end,1:k:end)) - colormap([0 0 0]): black-white) such as x=1:M và y=1:N, with
Nguyen Thanh Hai, PhD	

University of Technology and Education Faculty of Electrical & Electronic Engineering	nage Filtering					
IMAGE FILTERING IN THE FRE	IMAGE FILTERING IN THE FREQUENCY DOMAIN					
Ex 4.3 : express the plot using mesh for the Butterworth lowpass filter with different orders.	axis([0 50 0 50 0 1]); saveas(gcf, 'Hinh3.7b.tif', 'tif'); BLPF3=fftshift(lpfilter('btw',500,500, 50,3));					
clear all; BLPF1=fftshift(lpfilter('btw',500,500,5 0,1));	figure;mesh(BLPF3(1:10:500,1:10:5 00)); axis([0 50 0 50 0 1]);					
mesh(BLPF1(1:10:500,1:10:500)); axis([0 50 0 50 0 1]);	saveas(gcf, 'Hinh3.7c.tif', 'tif');					
saveas(gcf, 'Hinh3.7a.tif', 'tif');	BLPF4=fftshift(lpfilter('btw',500,500, 50,4));					
BLPF2=fftshift(lpfilter('btw',500,500,5 0,2));	figure;mesh(BLPF4(1:10:500,1:10:5 00));					
figure;mesh(BLPF2(1:10:500,1:10:50 0));	axis([0 50 0 50 0 1]); saveas(gcf, 'Hinh3.7d.tif', 'tif');					
Nguyen Thanh Hai, PhD	30					

University of Technology and Education Faculty of Electrical & Electronic Engineering	Image Filtering
IMAGE FILTERING IN THE FR	EQUENCY DOMAIN
Ex 4.4 : express the lowpass filter wit different cut-off frequencies and compare results	h
clear all; f=imread('cameraman.bmp');	D03=3/5*size(f,1); [M,N]=size(f); [H,D]=lpfilter('ideal',2*M,2*N,D03);
D01=1/5*size(f,1);	g=utint(1,11),
[M,N]=size(f); [H,D]=lpfilter('ideal',2*M,2*N,D01); g=dftfilt(f,H);	D04=4/5*size(f,1); [M,N]=size(f); [H,D]=lpfilter('ideal',2*M,2*N,D04);
D02=2/5*size(f,1);	g=dftfilt(f,H);
[M,N]=size(f); [H,D]=lpfilter('ideal',2*M,2*N,D02); g=dftfilt(f,H);	D05=size(f,1); [M,N]=size(f); [H,D]=lpfilter('ideal',2*M,2*N,D04); g=dftfilt(f,H); 33
Nauvon Thanh Hai, PhD	

Nguyen Thanh Hai, PhD

University of Technology and Education Faculty of Electrical & Electronic Engineering	Image Filtering
Ideal highpass filter	
The ideal highpass filter is often sharper by eliminating the low	en implemented to filter image / frequencies
If the transfer of the lowpass f as follows: $H_{hp}(u)$	ilter is $H_{lp}(u, v)$, we have the highpass filter $(u, v) = 1 - H_{lp}(u, v)$
Build the highpass filter function	on using Matlab
function H=h if nargin==4 n=1; End Hlp=lpfilter(ty H=1-Hlp; end	pfilter(type,M,N,D0,n) ′pe,M,N,D0,n);
Nguyen Thanh Hai, PhD	35

University of Technology Faculty of Electrical & Electr	and Education onic Engineering Image Filtering ERING IN THE FREQUENCY DOMAIN	
	<i>Ex 4.5:</i> Express the highpass filter using the function <i>mesh</i> for image.	
	clear all;close all;clc ILPF=fftshift(hpfilter('ideal',500,500,50)); mesh(ILPF(1:10:500,1:10:500)); axis([0 50 0 50 0 1]);	
cuu	BLPF=fftshift(hpfilter('btw',500,500,50)); mesh(BLPF(1:10:500,1:10:500)); axis([0 50 0 50 0 1]);	
	GLPF=fftshift(hpfilter('gaussian',500,500,50)); mesh(GLPF(1:10:500,1:10:500)); axis([0 50 0 50 0 1]);	
Nguyen Thanh Hai, PhD		36

University of Technology and Education Faculty of Electrical & Electronic Engineering	Image Filtering EQUENCY DOMAIN
Ex 4.6 : express the hig filtering using Matlab.	Jh frequency emphasis
clear all;	
f=imread('satellite.tiff');	
[M N]=size(f);	
$DU=U.1^{SIZe}(1,1);$ $HDM/_befilter/btw/2^{A}$	
$H=0.5\pm2*HBW$	I,2 N,DO),
abw=dftfilt(f.HBW):	
gbw=gscale(gbw);	
ghf=dftfilt(f,H);	
ghf=gscale(ghf);	
ghe=histeq(ghf,256);	
	39
Nguyen Thanh Hai, PhD	

University of Technology and Education Faculty of Electrical & Electronic Engineering				
Image Filtering				
Problem: Calculate the mask h.	convo	lution	of the im	age A and the
Suppose the input imag	je is			
A = [17]	24	1	8 15	
23	5	7	14 16	
4	6	13	20 22	
cuu duon ¹⁰	12	19	21 3	. com
11	18	25	2 9]
And the kernel (mask)				
h =	[8]	1	6	
	3	5	7	
	4	9	2]	42
Nguyen Thanh Hai, PhD			-	

University of Technology and Education Faculty of Electrical & Electronic Engineering		
	Image Filtering	
	The End	
		43
Nguyen Thanh Hai, PhD		