ASYMMETRIC CIPHERS

Contents

- 1) Principles Of Public-Key Cryptosystems
- 2) RSA Algorithm

1. Principles Of Public-Key Cryptosystems

1. Principles Of Public-Key Cryptosystems

- Commonly know as public key cryptography
- Invented by Whitfield Diffie and Martin Hellman in 1976
- Uses a pair of key
 - A private key that is kept secret
 - A public key that can be sent to anyone

Public-Key Cryptosystems

- Asymmetric algorithms rely on one key for encryption and a different but related key for decryption. These algorithms have the following important characteristic.
 - It is computationally infeasible to determine the decryption key given only knowledge of the cryptographic algorithm and the encryption key.
 - Either of the two related keys can be used for encryption, with the other used for decryption.

Encryption with public key

Encryption with private key

Authentication and confidentiality

• possible to provide both the authentication function and confidentiality by

a double use of the public-key.

- $Z=E(PU_b, E(PR_a, X))$
- $X=D(PU_a, D(PR_b, Z))$

Applications for Public-Key Cryptosystems

- Encryption/decryption: The sender encrypts a message with the recipient's public key.
- **Digital signature:** The sender "signs" a message with its private key.
- Key exchange: Two sides cooperate to exchange a session key.

Algorithm	Encryption/Decryption	Digital Signature	Key Exchange	
RSA	Yes	Yes	Yes	
Elliptic Curve	Yes	Yes	Yes	
Diffie-Hellman	No	No	Yes	
DSS	No	Yes	No	

Requirements for Public-Key Cryptography

- It is computationally easy for a party B to generate a pair.
- It is computationally easy for a sender A, knowing the public key and the message to be encrypted, M, to generate the corresponding ciphertext.

C=E(PUb,M)

• It is computationally easy for the receiver B to decrypt the resulting ciphertext using the private key to recover the original message:

Requirements for Public-Key Cryptography

- It is computationally infeasible for an adversary, knowing the public key, PU_b , to determine the private key, PR_b .
- It is computationally infeasible for an adversary, knowing the public key, PU_b , and a ciphertext, C, to recover the original message, M.

2. RSA ALGORITHM

RSA Algorithm

- Developed in 1977 by Ron Rivest, Adi Shamir, and Len Adleman.
- The RSA scheme is a block cipher in which the plaintext and ciphertext are integers between 0 and n-1 for some n. A typical size for n is 1024 bits, or 309 decimal digits. That is, n is less than 2¹⁰²⁴
- Based on exponentiation in a finite field over intergers modulo a prime

Description of the Algorithm

- Select two large prime numbers: p and q
- Calculate: n = pq
- Calculate: m=(p-1)(q-1)
- Choose a small number e, co prime to m, with GCD(m,e)=1; 1<e<m
- Find d, such that $e.d \equiv 1 \mod m$
- PU = (n, e), PR = (n, d)

Description of the Algorithm

• Encryption:

 $C = M^e \mod n \ (v \acute{o}i \ M < n)$

• Decryption:

 $M = C^d \bmod N$

Euclid's algorithm

• Computing the greatest common divisor (GCD) of two numbers,

 $|gcd(a,b) = gcd(b, a \mod b)$ 1. A \leftarrow a; B \leftarrow b 2. if B = 0 return A = gcd(a, b)3. $R = A \mod B$ 4. A \leftarrow B 5. B \leftarrow R 6. goto 2

```
int USCLN(int a, int b)
while (b != 0) {
     int r = a b;
     a = b;
     b = r;
return a;
```

	To find gcd(1970, 1066)			
	1970	= 1 x 1066 + 904	gcd(1066, 904)	
	1066	= 1 x 904 + 162	gcd(904, 162)	
A1 = B1 * O1 + R1	904	= 5 x 162 + 94	gcd(162, 94)	
	162	= 1 x 94 + 68	gcd(94, 68)	
A2 = B2 * Q2 + R2	94	= 1 x 68 + 26	gcd(68, 26)	
	68	= 2 x 26 + 16	gcd(26, 16)	
A3 = B3 * Q3 + R3	26	= 1 x 16 + 10	gcd(16, 10)	
AA = BA * OA + DA	16	= 1 x 10 + 6	gcd(10, 6)	
A4 = D4 ~ V4 + K4	10	= 1 x 6 + 4	gcd(6, 4)	
	6	= 1 x 4 + 2	gcd(4, 2)	
	4	= 2 x 2 + 0	gcd(2, 0)	
	Therefore, gcd(1970, 1066) = 2			

Extended Euclid's algorithm

- 1. $(A1, A2, A3) \leftarrow (1, 0, m); (B1, B2, B3) \leftarrow (0, 1, b)$
- 2. if B3 = 0 return A3 = gcd(m, b); no inverse
- 3. if B3 = 1 return B3 = gcd(m, b); B2
- $4. \quad Q = A3 \text{ div } B3$
- 5. $(T1, T2, T3) \leftarrow (A1 Q*B1, A2 Q*B2, A3 Q*B3)$
- 6. $(A1, A2, A3) \leftarrow (B1, B2, B3)$
- 7. $(B1, B2, B3) \leftarrow (T1, T2, T3)$
- 8. goto 2

Extended Euclid's algorithm - example

• Finding inverse of 7 in modulo 187

Q	A 1	A 2	A 3	B 1	B 2	B3	T1	T2	тз
	1	0	187	0	1	7			
26	0	1	7	1	-26	5	1	-26	5
1	1	-26	5	-1	27	2	-1	27	2
2	-1	27	2	3	-80	1	3	-80	1

=>Result: 80

RSA Example

- p = 11, q = 3 => n = pq=33
- m = (p-1)(q-1) = (11-1)(3-1) = 20
- Gcd(m,e)=1
- e corprime to m, means that the largest numbet that can be exactly divide both e and m (their greatest common divisor, or gcd) is 1. Euclid's algorithm is used to find the GCD of two numbers

RSA Example

- e=2 => GCD(20,e) = 2 (no)
- e=3 => GCD(20,e)=1 (yes!)
- Find d: using Extended Euclid's algorithm ? d=7
- PU (33, 3), PR = (33, 7)

Plaintext: M = 15:

Encryption: $C = 15^3 \mod 33 = 9$

Deencryption: c=9

 $M = 9^7 \mod 33 = 15$

RSA Security

- Brute-force attack
- Mathematical attack
- Timing attack
- Chosen ciphertext attack

