
MULTI-THREADING

1

MULTI-THREADING IN JAVA

Java provides built-in support for multi-threaded

programming.

 Implementing the Runnable interface.

 Extending the Thread class.

2

PROVIDE A RUNNABLE

OBJECT (1)

 The Runnable interface definds a single methos,

run, meant to contain the code executed in the

thread. The Runnable object is passed to the

Thread constructor.

3

PROVIDE A RUNNABLE

OBJECT (2)

Public class HelloRunnable implements Runnable{

 public void run(){

 System.out.println(“Hello”);

 }

 public static void main(String args[]){

 (new Thread(new HelloRunnable())).start();

 }

}

4

SUBCLASS THREAD (1)

 The Thread class itself implements Runnable,

though its run method does nothing. An class can

subclass Thread, providing its own

implementation of run.

5

SUBCLASS THREAD (2)

Public class HelloThread extends Thread{

 public void run(){

 System.out.println(“Hello”);

 }

 public static void main(String args[]){

 (new HelloThread()).start();

 }

}

6

IMPORTANT METHODS OF THE

THREAD CLASS

 void start()

 void run()

 void setName()

 int getPriority

 void setPriority

 static void sleep(long)

 static void sleep(long,long)

 static void yield

 void join(long)

 boolean isAlive()

7

PAUSING EXECUTION WITH SLEEP

 Thread.sleep causes the current thread to

suspend execution for a specified period.

 Two overloaded versions of sleep are provided:

ont that specifies the sleep time to the milisecond

and one that specifies the sleep time to the

nanosecond. These sleep times are not

guaranteed to be precise, because they are

limited by the facilities provides by the underlying

OS.

8

INTERRUPTS

 An interrupt is an indication to a thread that it

should stop what it is doing and do something

else. It’s up to the programmer to decide exactly

how a thread responds to an interrupt.

9

JOINS

 The join method allows one thread to wait for the

completion of another. As with sleep, join is

dependent on the OS for timing.

10

JOINS

 The join method allows one thread to wait for the

completion of another. As with sleep, join is

dependent on the OS for timing.

11

SYNCHRONIZATION

 Thread communicate primarily by sharing access

to fields and the objects reference fields refer to.

This form of communication in extremely

effiecient, but make two kinds of errors possible:

thread interference and memory consistency

error. The tool needed to prevent these errors is

synchronization.

12

THREAD INTERFERENCE (1)

 Interference happens when two operations,

running in the different threads, but acting on the

same data, interleave. This mean that two

operations consist of multiple steps, and the

sequences of steps overlap.

13

THREAD INTERFERENCE (2)
class Counter{

 private int c = 0;

 private void increment(){

 c++;

 }

 private void decrement(){

 c--;

 }

 public int value(){

 return c;

 }

}
14

THREAD INTERFERENCE (3)

Suppose Thread A invoke increment at about the

same time Thread B invokes decrement. In the

initial value of c is 0 then:

1. Thread A: Retrieve c.

2. Thread B: Retrieve c.

3. Thread A: Increment, c = 1.

4. Thread B: Decrement, c=-1.

5. Thread A: Store result, c=1.

6. Thread B: Store result, c=-1.

A’s result is lost, overwritten by B.
15

MEMORY CONSISTENCY

ERROR

 Memory consistenct errors occurs when different

threads have inconsistent views of the shared

data.

16

SYNCHRONIZED

 The Java programming language provides two

basic synchronization idioms: synchronized

methods and synchronized statements.

17

SYNCHRONIZED METHODS (1)

 To make a method synchronized, simply add the

synchronized keywork to its declaration.

18

SYNCHRONIZED METHODS (2)

 It is not possible for two invications of

synchronized methods on the same object to

interleave. When one thread is executung a

synchronized method for an object, all other

threads that invoke synchronized methods for the

same object block until the first thread is done

with the object.

19

SYNCHRONIZED STATEMENTS

 Synchronized statements must specify the object

that provides the intrinsic lock:

 public void addName(String name){

 synchronized(this){

 lastName=name;

 nameCount++;

 }

 nameList.add(name);

 }

20

VOLATILE

 Using volatile variables reduces the risk of

memory consistency errors.

21

